1、点与圆的位置关系教材分析点与圆的位置关系教材分析(经典版)编制人:_审核人:_审批人:_编制学校:_编制时间:_年_月_日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如幼儿教案、小学教案、中学教案、教学活动、评语、寄语、发言稿、工作计划、工作总结、心得体会、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope t
2、hat after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this shop provides you with various types of classic sample essays, such as preschool lesson
3、plans, elementary school lesson plans, middle school lesson plans, teaching activities, comments, messages, speech drafts, work plans, work summary, experience, and other sample essays, etc. I want to know Please pay attention to the different format and writing styles of sample essays!点与圆的位置关系教材分析
4、这是点与圆的位置关系教材分析,是优秀的数学教案文章,供老师家长们参考学习。 点与圆的位置关系教材分析第 1 篇 课时设计 课堂实录 点和圆、直线和圆的位置关系 1第一学时 教学活动 活动1【讲授】直线和圆 课堂引入: 前面我们复习了圆的方程、点与圆的位置关系,这课我们复习用圆的方程来解决直线与圆的位置关系。请先做以下练习(教师巡堂以便了解课下预习情况) (1)、判断直线4x-3y=5与圆x +y =25的位置关系 (2)、求圆x +y =25的过点P(3,4)的切线方程. (3)、求圆x +y =25的过点P(5,4)的切线方程. (4)、求圆x +y =25被直线4x-3y-20=0所截得的
5、弦长。 (这一部分在引入正课后直接用多媒体投影给出,并由学生快速运算,然后提问结果) 二、 知识梳理: 提出问题:直线与圆有几种位置关系,用什么方法来判断? 1 .直线和圆位置关系的判定方法一是方程的观点,即把圆的方程和直线的方程联立成方程组,利用判别式Δ来讨论位置关系. Δ0,直线和圆相交. Δ=0,直线和圆相切. Δ0,直线和圆相离. 方法二是几何的观点,即把圆心到直线的距离d和半径R的大小加以比较. dR,直线和圆相交. d=R,直线和圆相切. dR,直线和圆相离. 2. 直线和圆相切,这类问题主要是求圆的切线方程.求圆的切线方程主要可分为
6、已知斜率k或已知直线上一点两种情况,而已知直线上一点又可分为已知圆上一点和圆外一点两种情况.先判断点与圆的位置关系,再用切线的性质求方程。 1)若点p(x ,y )在圆上,则圆x +y =r :的切线方程为xx +y y = r ,圆(x-a) +(y-b) =r 的切线方程为(x-a)(x -a)+(y-b)(y -b)= r 2)若点p(x0,y0)在圆外:利用圆心到直线的距离等于半径将切线的斜率求出来,再写出切线的方程(斜率不存在的切线方程不要遗漏). 3. 直线和圆相交,这类问题主要是求弦长以及弦的中点问题. (师生一起归纳,并由教师板书) 三、例题解析: 例1.(1).设m0,则直线
7、 (x+y)+1+m=0与圆x2+y2=m(m0)的位置关系为 A.相切 B.相交 C.相切或相离 D.相交或相切 解析:圆心到直线的距离为d= ,圆半径为 . dr= = (m2 +1)= ( 1)20, ∴直线与圆的位置关系是相切或相离. 答案:C (2).圆x2y24x+4y+6=0截直线xy5=0所得的弦长等于 A. B. C.1 D.5 解析:圆心到直线的距离为 ,半径为 ,弦长为2 = . 答案:A (进一步说明圆心到直线的距离在直线与圆的关系问题中的重要地位) 例2.已知圆满足截.y轴所得的弦长为2;被x轴分两段弧,其弧长之比为此3:1;圆心到直线:x-2y=0的距
8、离为 .求该圆的方程. 解:设圆的方程为: (xa)2(yb)2r 则由条件得 =r (1) 又由得a +1=r (2) 又由得 (3) 联立(1(2)(3),解方程组得a=-1,b=-1,r= 或 a=1,b=1,r= 所求圆的方程为: (x+1)2(y+1)22或(x-1)2(y-1)22 (这是早几年的一道高考题,在高考复习中经常作为典型例题来用,我的学生对第(2)问的把握可能会有困难,因此,这一问要结合图形来分析解决.由于学生对解含有绝对值的方程组有畏难情绪,因此,教师板书解题的整个过程,并且鼓励学生面对这类问题时积极应对,常规方法入手,运算要快而准确) 例3 已知圆C:(x1)2(y
9、2)225,直线l:(2m+1)x+(m+1)y7m4=0(m∈R) (1)证明:不论m取什么实数,直线l与圆恒交于两点; (2)求直线被圆C截得的弦长最小时l的方程. 剖析:直线过定点,而该定点在圆内,此题便可解得 (先由学生思考,提出他们的解答方案,再由老师补充:由含有一个参数的直线方程入手思考) (1)证明:l的方程(x+y4)+m(2x+y7)=0. 得 m∈R,∴ 2x+y7=0, x=3, x+y4=0, y=1, 即l恒过定点A(3,1). 圆心C(1,2),AC 5(半径), ∴点A在圆C内,从而直线l恒与圆C相交于两点. (2)
10、解:弦长最小时,lAC,由kAC , ∴l的方程为2xy5=0. 思悟小结 1.直线和圆的位置关系有且仅有三种:相离、相切、相交.判定方法有两个:几何法,比较圆心到直线的距离与圆的半径间的大小;代数法,看直线与圆的方程联立所得方程组的解的个数. 2.解决直线与圆的位置关系的有关问题,往往充分利用平面几何中圆的性质使问题简化 【例4】 已知圆的方程为x2+y2+ax+2y+a2=0,一定点为A(1,2),要使过定点A(1,2)作圆的切线有两条,求a的取值范围. 解:将圆的方程配方得(x+ )2+(y+1)2= ,圆心C的坐标为( ,1),半径r= , 条件是43a20,过点A(1,
11、2)所作圆的切线有两条,则点A必在圆外,即 . 化简得a2+a+90. 由 43a20, a2+a+90, 解之得 a , a∈R. ∴ a . 故a的取值范围是( , ) (确定参数的解析几何问题是学生最薄弱的环节,此题的选择一方面是巩固本节课的内容,另一方面也是对直线与圆锥曲线问题中难点的一个分散处理) 四课堂小练 1.若圆(x3)2(y+5)2r2上有且只有两个点到直线4x3y=2的距离等于1,则半径r的范围是( ) A.(4,6) B.4,6) C.(4,6 D.4,6 解析:数形结合法解. 答案:A 2.(2003年春季北京)已知直线ax+by+c=0(abc
12、≠0)与圆x2+y2=1相切,则三条边长分别为a、b、c的三角形 A.是锐角三角形 B.是直角三角形 C.是钝角三角形 D.不存在 解析:由题意得 =1,即c2=a2+b2,∴由a、b、c构成的三角形为直角三角形. 答案:B 3.(2005年春季北京,11)若圆x2+y2+mx =0与直线y=1相切,且其圆心在y轴的左侧,则m的值为_. 解析:圆方程配方得(x+ )2+y2= ,圆心为( ,0). 由条件知 0. 又圆与直线y=1相切,则0(1)= ,即m2=3,∴m= . 答案: 4.(2004年福建,13)直线x+2y=0被曲线x2+y26x2y15=0所
13、截得的弦长等于_. 解析:由x2+y26x2y15=0,得(x3)2+(y1)2=25. 知圆心为(3,1),r=5. 由点(3,1)到直线x+2y=0的距离d= = . 可得 弦长为2 ,弦长为4 . 答案:4 5.自点A(3,3)发出的光线l射到x轴上,被x轴反射,其反射光线所在的直线与圆x2y24x4y70相切,求光线l所在直线的方程. 解:圆(x2)2(y2)21关于x轴的对称方程是(x2)2(y2)21. 设l方程为y3k(x3),由于对称圆心(2,2)到l距离为圆的半径1,从而可得k1 ,k2 故所求l的方程是3x4y30或4x3y30. 6.已知M(x0,y0)是圆x2+y2=r
14、2(r0)内异于圆心的一点,则直线x0x+y0y=r2与此圆有何种位置关系? 分析:比较圆心到直线的距离与圆半径的大小. 解:圆心O(0,0)到直线x0x+y0y=r2的距离为d= . P(x0,y0)在圆内,∴ 则有dr,故直线和圆相离. (课堂练习由多媒体投影给出,学生练完后,打出正确答案和解答过程) 五课堂小结 1.有关直线和圆的位置关系,一般要用圆心到直线的距离与半径的大小来确定. 2.当直线和圆相切时,求切线方程一般要用圆心到直线的距离等于半径,求切线长一般要用切线、半径及圆外点与圆心连线构成的直角三角形;与圆相交时,弦长的计算也要用弦心距、半径及弦长的一半构成的直角三角形. 3.有关圆的问题,注意圆心、半径及平面几何知识的应用. 六课后作业 8.(文)求经过点A(2,4),且与直线
copyright@ 2008-2022 冰豆网网站版权所有
经营许可证编号:鄂ICP备2022015515号-1