ImageVerifierCode 换一换
格式:DOCX , 页数:36 ,大小:178.37KB ,
资源ID:6452638      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/6452638.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(初中数学竞赛定理.docx)为本站会员(b****6)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

初中数学竞赛定理.docx

1、初中数学竞赛定理正弦定理定理概述在一个三角形中,各边和它所对角的正弦的比相等。 即a/sinA=b/sinB=c/sinC=2R(2R在同一个三角形中是恒量,是此三角形外接圆的直径) 这一定理对于任意三角形ABC,都有 a/sinA=b/sinB=c/sinC=2R R为三角形外接圆半径 证明步骤1. 在锐角ABC中,设BC=a,AC=b,AB=c。作CHAB垂足为点H CH=asinB CH=bsinA asinB=bsinA 得到 a/sinA=b/sinB 同理,在ABC中, b/sinB=c/sinC 步骤2. 证明a/sinA=b/sinB=c/sinC=2R: 如图,任意三角形AB

2、C,作ABC的外接圆O. 作直径BD交O于D. 连接DA. 因为直径所对的圆周角是直角,所以DAB=90度 因为同弧所对的圆周角相等,所以D等于C. 所以c/sinCc/sinD=BD=2R 类似可证其余两个等式。 意义正弦定理指出了任意三角形中三条边与对应角的正弦值之间的一个关系式。 扩展三角形面积公式1.海伦公式: 设P=(a+b+c)/2 S=根号下P(P-a)(P-b)(P-c) 解释:假设有一个三角形,边长分别为a、b、c,三角形的面积S可由以下公式求得: S=p(p-a)(p-b)(p-c) 而公式里的p为半周长: p=(a+b+c)/2 2. SABC=(ab/2)sinC=(b

3、c/2)sinA=(ac/2)sinB=abc/(4R)R为外接圆半径 3.SABC=ah/2 正弦定理的变形公式(1) a=2RsinA, b=2RsinB, c=2RsinC; (2) sinA : sinB : sinC = a : b : c; (条件同上) 在一个三角形中,各边与其所对角的正弦的比相等,且该比值都等于该三角形外接圆的直径已知三角形是确定的,利用正弦定理解三角形时,其解是唯一的;已知三角形的两边和其中一边的对角,由于该三角形具有不稳定性,所以其解不确定,可结合平面几何作图的方法及“大边对大角,大角对大边”定理和三角形内角和定理去考虑解决问题 (3)相关结论: a/sin

4、A=b/sinB=c/sinC=(a+b)/(sinA+sinB)=(a+b+c)/(sinA+sinB+sinC) c/sinCc/sinD=BD=2R 设R为三角外接圆半径,公式可扩展为:a/sinA=b/sinB=c/sinC=2R,即当一内角为90时,所对的边为外接圆的直径。灵活运用正弦定理,还需要知道它的几个变形 sinA=a/2R,sinB=b/2R,sinC=c/2R asinB=bsinA,bsinC=csinB,asinC=csinA余弦定理余弦定理是揭示三角形边角关系的重要定理,直接运用它可解决一类已知三角形两边及夹角求第三边或者是已知三个边求角的问题,若对余弦定理加以变形

5、并适当移于其它知识,则使用起来更为方便、灵活。 余弦定理性质对于任意三角形,任何一边的平方等于其他两边平方的和减去这两边与他们夹角的余弦的两倍积,若三边为a,b,c 三角为A,B,C ,则满足性质 (注:a*b、a*c就是a乘b、a乘c 。a2、b2、c2就是a的平方,b的平方,c的平方。) a2=b2+c2-2*b*c*CosA b2=a2+c2-2*a*c*CosB c2=a2+b2-2*a*b*CosC CosC=(a2+b2-c2)/2ab CosB=(a2+c2-b2)/2ac CosA=(c2+b2-a2)/2bc 余弦定理证明 平面几何证法: 在任意ABC中 做ADBC. C所对

6、的边为c,B所对的边为b,A所对的边为a 则有BD=cosB*c,AD=sinB*c,DC=BC-BD=a-cosB*c 根据勾股定理可得: AC2=AD2+DC2 b2=(sinB*c)2+(a-cosB*c)2 b2=sin2B*c2+a2+cos2B*c2-2ac*cosB b2=(sin2B+cos2B)*c2-2ac*cosB+a2 b2=c2+a2-2ac*cosB cosB=(c2+a2-b2)/2ac 余弦定理的作用(1)已知三角形的三条边长,可求出三个内角; (2)已知三角形的两边及夹角,可求出第三边. 例如:已知ABC的三边之比为:2:1,求最大的内角. 解 设三角形的三边

7、为a,b,c且a:b:c=:2:1. 由三角形中大边对大角可知:A为最大的角.由余弦定理 cos A=- 所以A=120. 再如ABC中,AB=2,AC=3,A=3,求BC之长. 解 由余弦定理可知 BC2=AB2+AC2-2ABACcos A =4+9-223=7, 所以BC=7. 以上两个小例子简单说明了余弦定理的作用. 其他从余弦定理和余弦函数的性质可以看出,如果一个三角形两边的平方和等于第三边的平方,那么第三边所对的角一定是直角,如果小于第三边的平方,那么第三边所对的角是钝角,如果大于第三边的平方,那么第三边所对的角是锐角。即,利用余弦定理,可以判断三角形形状。同时,还可以用余弦定理求

8、三角形边长取值范围。斯特瓦尔特(stewart)定理 设已知ABC及其底边上B、C两点间的一点D,则有 AB²DC+AC²BD-AD²BCBCDCBD。 证明:在图26中,作AHBC于H。为了明确起见,设H和C在点D的同侧,那么由广勾股定理有 AC²=AD²DC²-2DCDH,(1)AB²=AD²+BD²+2BDDH。 (2) 用BD乘(1)式两边得 AC²BD=AD²BD+DC²BD-2DCDHBD,(1) 用DC乘(2)式两边得 AB²DC=AD²DC

9、BD²DC2BDDHDC。(2) 由(1)+(2)得到 AC²BD+AB²DC=AD²(BDDC)+DC²BDBD²DC =AD²BC+BDDCBC。 AB²DCAC²BD-AD²BC=BCDCBD。 或者根据余弦定理得 AB²=PB²+PA²-2PBPAcosAPB AC²=PA²+PC²-2PAPCcosAPC 两边同时除以PBPAPC得 AC²PB+AB²PC=(PB²+PA²)PC+(PA

10、²+PA²)PB 化简即可(注:图中2-7A点为P点,BDC点依次为ABC)梅涅劳斯(Menelaus)定理简介梅涅劳斯(Menelaus)定理(简称梅氏定理)是由古希腊数学家梅涅劳斯首先证明的。它指出:如果一条直线与ABC的三边AB、BC、CA或其延长线交于F、D、E点,那么(AF/FB)(BD/DC)(CE/EA)=1。 或:设X、Y、Z分别在ABC的BC、CA、AB所在直线上,则X、Y、Z共线的充要条件是(AZ/ZB)*(BX/XC)*(CY/YA)=1 证明一:过点A作AGBC交DF的延长线于G, 则AF/FB=AG/BD , BD/DC=BD/DC , CE/EA

11、=DC/AG。 三式相乘得:(AF/FB)(BD/DC)(CE/EA)=(AG/BD)(BD/DC)(DC/AG)=1 证明二:过点C作CPDF交AB于P,则BD/DC=FB/PF,CE/EA=PF/AF 所以有AF/FBBD/DCCE/EA=AF/FBFB/PFPF/AF=1 它的逆定理也成立:若有三点F、D、E分别在ABC的边AB、BC、CA或其延长线上,且满足(AF/FB)(BD/DC)(CE/EA)=1,则F、D、E三点共线。利用这个逆定理,可以判断三点共线。 梅涅劳斯(Menelaus)定理证明三:过ABC三点向三边引垂线AABBCC, 所以AD:DB=AA:BB,BE:EC=BB:

12、CC,CF:FA=CC:AA 所以(AF/FB)(BD/DC)(CE/EA)=1 证明四:连接BF。 (AD:DB)(BE:EC)(CF:FA) =(SADF:SBDF)(SBEF:SCEF)(SBCF:SBAF) =(SADF:SBDF)(SBDF:SCDF)(SCDF:SADF) =1 此外,用定比分点定义该定理可使其容易理解和记忆: 在ABC的三边BC、CA、AB或其延长线上分别取L、M、N三点,又分比是=BL/LC、=CM/MA、=AN/NB。于是L、M、N三点共线的充要条件是=1。 第一角元形式的梅涅劳斯定理 如图:若E,F,D三点共线,则 (sinACF/sinFCB)(sinBA

13、D/sinDAC)(sinCBA/sinABE)=1 即图中的蓝角正弦值之积等于红角正弦值之积 该形式的梅涅劳斯定理也很实用 第二角元形式的梅涅劳斯定理 在平面上任取一点O,且EDF共线,则(sinAOF/sinFOB)(sinBOD/sinDOC)(sinCOA/sinAOE)=1。(O不与点A、B、C重合) 记忆ABC为三个顶点,DEF为三个分点 (AF/FB)(BD/DC)(CE/EA)=1 (顶到分/分到顶)*(顶到分/分到顶)*(顶到分/分到顶)=1 空间感好的人可以这么记:(上1/下1)*(整/右)*(下2/上2)=1 实际应用为了说明问题,并给大家一个深刻印象,我们假定图中的A、

14、B、C、D、E、F是六个旅游景点,各景点之间有公路相连。我们乘直升机飞到这些景点的上空,然后选择其中的任意一个景点降落。我们换乘汽车沿公路去每一个景点游玩,最后回到出发点,直升机就停在那里等待我们回去。 我们不必考虑怎样走路程最短,只要求必须“游历”了所有的景点。只“路过”而不停留观赏的景点,不能算是“游历”。 例如直升机降落在A点,我们从A点出发,“游历”了其它五个字母所代表的景点后,最终还要回到出发点A。 另外还有一个要求,就是同一直线上的三个景点,必须连续游过之后,才能变更到其它直线上的景点。 从A点出发的旅游方案共有四种,下面逐一说明: 方案 从A经过B(不停留)到F(停留),再返回B

15、(停留),再到D(停留),之后经过B(不停留)到C(停留),再到E(停留),最后从E经过C(不停留)回到出发点A。 按照这个方案,可以写出关系式: (AF:FB)*(BD:DC)*(CE:EA)=1。 现在,您知道应该怎样写“梅涅劳斯定理”的公式了吧。 从A点出发的旅游方案还有: 方案 可以简记为:ABFDECA,由此可写出以下公式: (AB:BF)*(FD:DE)*(EC:CA)=1。从A出发还可以向“C”方向走,于是有: 方案 ACEDFBA,由此可写出公式: (AC:CE)*(ED:DF)*(FB:BA)=1。 从A出发还有最后一个方案: 方案 AECDBFA,由此写出公式: (AE:E

16、C)*(CD:DB)*(BF:FA)=1。 我们的直升机还可以选择在B、C、D、E、F任一点降落,因此就有了图中的另外一些公式。 值得注意的是,有些公式中包含了四项因式,而不是“梅涅劳斯定理”中的三项。当直升机降落在B点时,就会有四项因式。而在C点和F点,既会有三项的公式,也会有四项的公式。公式为四项时,有的景点会游览了两次。 不知道梅涅劳斯当年是否也是这样想的,只是列出了一两个典型的公式给我们看看。 还可以从逆时针来看,从第一个顶点到逆时针的第一个交点比上到下一个顶点的距离,以此类推,可得到三个比例,它们的乘积为1. 现在是否可以说,我们对梅涅劳斯定理有了更深刻的了解呢。那些复杂的相除相乘的

17、关系式,不会再写错或是记不住吧。塞瓦定理简介塞瓦(Giovanni Ceva,16481734)意大利水利工程师,数学家。塞瓦定理载于塞瓦于1678年发表的直线论一书,也有书中说塞瓦定理是塞瓦重新发现。 具体内容塞瓦定理 在ABC内任取一点O, 直线AO、BO、CO分别交对边于D、E、F,则 (BD/DC)*(CE/EA)*(AF/FB)=1 证法简介 ()本题可利用梅涅劳斯定理证明: ADC被直线BOE所截, (CB/BD)*(DO/OA)*(AE/EC)=1 而由ABD被直线COF所截, (BC/CD)*(DO/OA)*(AF/FB)=1 :即得:(BD/DC)*(CE/EA)*(AF/F

18、B)=1 ()也可以利用面积关系证明 BD/DC=SABD/SACD=SBOD/SCOD=(SABD-SBOD)/(SACD-SCOD)=SAOB/SAOC 同理 CE/EA=SBOC/ SAOB AF/FB=SAOC/SBOC 得BD/DC*CE/EA*AF/FB=1 利用塞瓦定理证明三角形三条高线必交于一点: 设三边AB、BC、AC的垂足分别为D、E、F, 根据塞瓦定理逆定理,因为(AD:DB)*(BE:EC)*(CF:FA)=(CD*ctgA)/(CD*ctgB)*(AE*ctgB)/(AE*ctgC)*(BF*ctgC)/(BF*ctgA)=1,所以三条高CD、AE、BF交于一点。 可

19、用塞瓦定理证明的其他定理; 三角形三条中线交于一点(重心):如图5 D , E分别为BC , AC 中点 所以BD=DC AE=EC 所以BD/DC=1 CE/EA=1 且因为AF=BF 所以 AF/FB必等于1 所以AF=FB 所以三角形三条中线交于一点 此外,可用定比分点来定义塞瓦定理: 在ABC的三边BC、CA、AB或其延长线上分别取L、M、N三点,又分比是=BL/LC、=CM/MA、=AN/NB。于是AL、BM、CN三线交于一点的充要条件是=1。(注意与梅涅劳斯定理相区分,那里是=-1) 塞瓦定理推论1.设E是ABD内任意一点,AE、BE、DE分别交对边于C、G、F,则(BD/BC)*

20、(CE/AE)*(GA/DG)=1 因为(BC/CD)*(DG/GA)*(AF/FB)=1,(塞瓦定理)所以 (BD/CD)*(CE/AE)*(AF/FB)=K(K为未知参数)且(BD/BC)*(CE/AE)*(GA/DG)=K(K为未知参数)又由梅涅劳斯定理得:(BD/CD)*(CE/AE)*(AF/FB)=1 所以(BD/BC)*(CE/AE)*(GA/DG)=1 2.塞瓦定理角元形式 AD,BE,CF交于一点的充分必要条件是: (sinBAD/sinDAC)*(sinACF/sinFCB)*(sinCBE/sinEBA)=1 由正弦定理及三角形面积公式易证 3.如图,对于圆周上顺次6点A

21、,B,C,D,E,F,直线AD,BE,CF交于一点的充分必要条件是: (AB/BC)*(CD/DE)*(EF/FA)=1 由塞瓦定理的角元形式,正弦定理及圆弦长与所对圆周角关系易证。托勒密定理定理的提出一般几何教科书中的“托勒密定理”,实出自依巴谷(Hipparchus)之手,托勒密只是从他的书中摘出。 定理的内容托勒密(Ptolemy)定理指出,圆的内接凸四边形两对对边乘积的和等于两条对角线的乘积。 原文:圆的内接四边形中,两对角线所包矩形的面积等于 一组对边所包矩形的面积与另一组对边所包矩形的面积之和。 从这个定理可以推出正弦、余弦的和差公式及一系列的三角恒等式,托勒密定理实质上是关于共圆

22、性的基本性质 证明一、(以下是推论的证明,托勒密定理可视作特殊情况。) 在任意四边形ABCD中,作ABE使BAE=CAD ABE= ACD 因为ABEACD 所以 BE/CD=AB/AC,即BEAC=ABCD (1) 又有比例式AB/AC=AE/AD 而BAC=DAE 所以ABCAED相似. BC/ED=AC/AD即EDAC=BCAD (2) (1)+(2),得 AC(BE+ED)=ABCD+ADBC 又因为BE+EDBD (仅在四边形ABCD是某圆的内接四边形时,等号成立,即“托勒密定理”) 所以命题得证 复数证明 用a、b、c、d分别表示四边形顶点A、B、C、D的复数,则AB、CD、AD、

23、BC、AC、BD的长度分别是:(a-b)、(c-d)、(a-d)、(b-c)、(a-c)、(b-d)。 首先注意到复数恒等式: (a b)(c d) + (a d)(b c) = (a c)(b d) ,两边取模,运用三角不等式得。 等号成立的条件是(a-b)(c-d)与(a-d)(b-c)的辐角相等,这与A、B、C、D四点共圆等价。 四点不限于同一平面。 平面上,托勒密不等式是三角不等式的反演形式。 二、 设ABCD是圆内接四边形。 在弦BC上,圆周角BAC = BDC,而在AB上,ADB = ACB。 在AC上取一点K,使得ABK = CBD; 因为ABK + CBK = ABC = CB

24、D + ABD,所以CBK = ABD。 因此ABK与DBC相似,同理也有ABD KBC。 因此AK/AB = CD/BD,且CK/BC = DA/BD; 因此AKBD = ABCD,且CKBD = BCDA; 两式相加,得(AK+CK)BD = ABCD + BCDA; 但AK+CK = AC,因此ACBD = ABCD + BCDA。证毕。 三、 托勒密定理:圆内接四边形中,两条对角线的乘积(两对角线所包矩形的面积)等于两组对边乘积之和(一组对边所包矩形的面积与另一组对边所包矩形的面积之和)已知:圆内接四边形ABCD,求证:ACBDABCDADBC 证明:如图1,过C作CP交BD于P,使1

25、=2,又3=4,ACDBCP得AC:BC=AD:BP,ACBP=ADBC 。又ACB=DCP,5=6,ACBDCP得AC:CD=AB:DP,ACDP=ABCD 。得 AC(BPDP)=ABCDADBC即ACBD=ABCDADBC 推论1.任意凸四边形ABCD,必有ACBDABCD+ADBC,当且仅当ABCD四点共圆时取等号。 2.托勒密定理的逆定理同样成立:一个凸四边形两对对边乘积的和等于两条对角线的乘积,则这个凸四边形外接于一圆、 推广托勒密不等式:四边形的任两组对边乘积不小于另外一组对边的乘积,取等号当且仅当共圆或共线。 简单的证明:复数恒等式:(a-b)(c-d)+(a-d)(b-c)=

26、(a-c)(b-d),两边取模, 得不等式ACBD|(a-b)(c-d)|+|(b-c)(a-d)|=ABCD+BCAD 注意: 1.等号成立的条件是(a-b)(c-d)与(a-d)(b-c)的辐角相等,这与A、B、C、D四点共圆等价。 2.四点不限于同一平面。 欧拉定理:在一条线段上AD上,顺次标有B、C两点,则ADBC+ABCD=ACBD西姆松定理是一个几何定理。表述为:过三角形外接圆上异于三角形顶点的任意一点作三边的垂线,则三垂足共线。(此线常称为西姆松线)。西姆松定理的逆定理为:若一点在三角形三边所在直线上的射影共线,则该点在此三角形的外接圆上。 西姆松定理说明相关的结果有: (1)称

27、三角形的垂心为H。西姆松线和PH的交点为线段PH的中点,且这点在九点圆上。 (2)两点的西姆松线的交角等于该两点的圆周角。 (3)若两个三角形的外接圆相同,这外接圆上的一点P对应两者的西姆松线的交角,跟P的位置无关。 (4)从一点向三角形的三边所引垂线的垂足共线的充要条件是该点落在三角形的外接圆上。 证明证明一: ABC外接圆上有点P,且PEAC于E,PFAB于F,PDBC于D,分别连DE、DF. 易证P、B、F、D及P、D、C、E和A、B、P、C分别共圆,于是FDP=ACP ,(都是ABP的补角) 且PDE=PCE 而ACP+PCE=180 FDP+PDE=180 即F、D、E共线. 反之,

28、当F、D、E共线时,由可见A、B、P、C共圆. 证明二: 如图,若L、M、N三点共线,连结BP,CP,则因PL垂直于BC,PM垂直于AC,PN垂直于AB,有B、P、L、N和 M、P、L、C分别四点共圆,有 PBN = PLN = PLM = PCM. 故A、B、P、C四点共圆。 若A、B、P、C四点共圆,则PBN = PCM。因PL垂直于BC,PM垂直于AC,PN垂直于AB,有B、P、L、N和M、P、L、C四点共圆,有 PBN =PLN =PCM=PLM. 故L、M、N三点共线。 相关性质的证明连AH延长线交圆于G, 连PG交西姆松线与R,BC于Q 如图连其他相关线段 AHBC,PFBC=AG/PF=1=2 A.G.C.P共圆=2=3 PEAC,PFBC=P.E.F.C共圆

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1