1、八九年级旋转模型综合 八九年级全等与旋转模型归纳考察点1:手拉手模型手拉手模型,亦称为共顶点等腰型,一定会出现旋转型全等。其衍生模型有等腰对补角模型和等腰旁等角模型模型回顾:一 . 绕点旋转三等腰旁等角型四 等腰对补角型1. 如图,已知ABC为等边三角形,D是BC下方一点,连AD. 若BDC=120,求证:(1)ADB=ADC=60(2)DA=DB+DC.2. 如图,已知ABC为等边三角形,D是BC下方一点,连AD. 若ADB=60,求证:(1)ADC=60(2)DA=DB+DC.3. 如图,已知ABC,AB=AC,ADB=ADC=60,求证:(1)ABC为等边三角形,(2)DA=DB+DC.
2、考察点2:”脚拉脚”模型。构造辅助线思路是先中线倍长,再证明旋转全等。如图AB=AC,CD=ED,BAC+CDE=180,若P为BE中点,求证:如图,A+C=180,E,F分别在BC,CD上,且AB=BE,AD=DF,M为EF中点,求证:DMBM 巩固练习如图,已知等边ABC,D是BC上任意一点,以AD为边作等边ADE,连CE,求证:(1)CD+CE=AC,(2)CE是ABCde外角平分线.如图,已知ABC,以AB、AC为边作正ABD和正ACE,CD交BE于O,连OA,求de值. (1) 如图1,ABAC, D为BC上一点,DADE,BAC=ADE90,求BCEde度数(2) 如图2,AB=AC,D为BC上一点,DADE,BACADE = (90),求证: AB / CE(3) 如图3,若ABC和ADE都是钝角三角形,那么(2)中结论是否变化 ?5,如图ABC和CDE均为等腰直角三角形,D为AB上一点,若ADE=15,