1、工程电磁场部分课后习题答案1-2-1 -点电荷q放在无界均匀介质中的一个球形空腔中心,设介质的介电常数为e,空腔的半径为a,求空腔表面的极化电荷面密度。 解 由高斯定律,介质中的电场强度为由关系式 D二罚E + P,得电极化强度为因此,空腔表面的极化电荷面密度为1-31从静电场基本方程出发,证明当电介质均匀时,极化电荷密度& 存在的条件是自由电荷的体密度p不为零,且有关系式心二-(1-)解 均匀介质的为常数从关系式D = CqZ? + P及D = 得介质中的 电极化强度P = D_ 切电=_切刍扱化电荷密度& = - V P = _ (1 _ 学)D :=(1 )-(1 - )V D e e由
2、于 Dp和可(1 -早)=0,故上式成为心=7_学1-4-5写岀下列静电场的边值问题:(1)电荷体密度分别为小和P2,半径分别为Q与&的双层同心带电球体 (如题 1 - 4-3 图(“);(2)在两同心导休球壳间,左半部和右半部分别填充介电常数为6与s2 的均匀介质,內球壳带总电荷量为Q,外球壳接地(如题1 -4-3图);(3)半径分别为a与Q的两无限长空心同釉圆柱面导体,内圆柱表面上单 位长度的电量为外圆柱面导体接地(如题-3怪1(c)。(4)题17-3图0(Ow; Y a)(a V rb)(2)选球坐标系,球心与原点重合。分析可知,电位爭仅为厂的函数,故有 如下的静电场边值问题;(在介质5
3、中)弘倂。(在介质“中)】字违S + dr釦警)=0c _ 將 dS = Q 。右Y页列=卩2 (在介质分界面上)由于在arb,有 吋轨二/所以以上边值问题可以简化为 堤(墙)7Ia cp I = 0(3)选圆柱坐标系,z轴与圆柱导体面的轴线重合,丙圆柱导体无限长,故 由对称性可知,电位(P仅为P的函数,有如下的静电场边值问题:歩令(喘円 g讪 =0f 爭 X 2tt2 = rI d1-7-4真空中一点电荷g = 10-6C,放在距金属球壳(半径为R = 5cm) 的球心15 cm处,求:(1)球面上各点甲,忙的表达式。何处场强最大,数值如何?(2)若将球壳接地,则悄况如何?解应用镜像电荷法、
4、镜像电荷的大小和位置为-务八吉X 10空=-*X 10-6 c.K2 _ 52 _ 5X忑一它-可曲如题1-7-4图所示:(1)球壳不接地。此时,球心处还应放一点电荷/=-心叱球外和球表面上任一点的由Q,和/共同产生。?题1 - 7讥图球面上的电位为(P = . Q b 二 60 kV r 4net)R珠面上任一点的电场强度为屯=盘严十爲肩十爲屈织不难判析,球面上A点的场强最大,数值为V/m(2若将球壳接地,这时,球外和球表面上任一点的护和E由g和共同产 生球面上的尅位为 卩=0 V球表面上任一点的电场强度为所以,网柱单位长度上的电荷r与两柱间的电压关系为点A处,场强和电荷面密度量大二eo 盘
5、十 rr(i-a)= O.1775X1O-6 C/m2点F处,场强和电荷面密度最小诅0匕轴-切越(W丽 -a + O+b)= 0.088 7X10_g C/m21-8-3两平行导线位于与地面垂直的平面内, 如题一 8 - 3图所示,已気导体半桎为2 mm,求导线单 O 位长度的祁分电容以及两导线间的等效电容。 o.解整个系统是由三个寻体组成的静电独立系 统,共有3个部分电容,为计算部分电容,先计算电位系 数,有题1-8-3图令ti = r,r2-0,计算此悄况下的卄 将地面 的影响用镜像电荷代替,并珞去导线2上感应电荷的影 响则得所以,有同理令门=()“2=.计算此情况下的知叫 将地面的影响用
6、億像电荷 代替,并略去导线1上感应电荷的彫响,则得所以,有根据各个系数之间的关系,可得B 二 竺 二20X0.130 1心22一 5201再根据部分电容与感应系数之间的关系,可得Ci2 = S= -012 = 2,7889x10-12 F/m Go= % +012 = 4438 9X1OT2 F/m C2o = B2i+022 = 4.511 1X1012 F/m 两导线间的等效电容为i-9-i闊个电容器5和q各充以电荷Q和(?2。然后移去电源債再将 两电容器并联,问总的能童是否械少?减少了多少?到哪里去了?解 两电容器并联后,它们的电压相等,且总电荷与联接前相同,这是一个 當电荷系统勺并联后
7、,每个电容器的电压为所以,两电容器中的总能量为叭=4。+昇2洛备磐而并联之前,两电容器中的总能鼠为2C2因比,能量的变化为叭=w-r 17 - CW2 一 C?qiF e 2(G + C2)CiG可见,并联后总的能量减少了。减少的这部分能量用于在电容養并联达到稳态 的过渡过理中,电位移电流辐肘到空间中去了。1-9-3用8etu厚、严5的电介质畀隔开的两片金届盘,形成一电容为 1 pF的平行板电容器,并接1 kV的电源如果不计摩擦,要把电介质片从两金 展盘间移出来.问在下列两种情况下各需做芬少功?(1) 移动前,电源已断开;(2) 移动中,电源一貢联着。解根据带电体系统中的能量守恒关系:与带电体
8、相联接的备电源提供的能肚二电场能量的堆量+电场力所做的功(1)对T电源断开的常电荷系统:电场力做功=电场能量的増虽)移动前,电容器中的电场能臺为WV1 = CL= IO l2x10b = 0.5 /J移动后,电容器的电客为a d r 5所以,电容器中的储能为Wq(注业=0,为常电荷系统)2扣吩扣(幼詔吃能)二号(刍)=叫所以外力做的功=-(电场力做的功)=WQ-用。1二2讨(2对于电源-宜接着的常电位系统,电场力所做的功在数值上等于电场 能量的增量。因为 叭=*CU“0.5 pjW犷专匚2口;=弄扣心二 所以外力做的功=-(W-Wel) = y wcl = fl.4 出1-9-6应用虚位移法,
9、计算教材中例1 - 27平行板电容器中两种介质分 界面上每单位面积所受的力。解 先讨论題1 -9-6图。这种情况下,设介质l和“的厚度分别为 小和“2,且右+ d2 = d(d是平板电容器的两极板间的距离),则电容髒的电容 为勺S 二 “2S“於2十切“巧(一圧1) +可01所以电场能量为则介頂分界面上所受的总力为由于介质1和2中的电场分别为所以八寺E匡2(6 - 2)S二扣2千尹单位面积上所受的力为这里,厂的参考方向由介质6指向介质2。(2)再看题1-9-6图(b)这种情况下,两种介质中的E是相等的。设介 质S和巾填充极板的面积分别为S严仃W和且i、mi为极 板的长度,眇为极板的宽度),则电
10、容器的电容为(、=11 十 2 = 轨 ”2+fJWd d d所以电场能量为叭=*cu u2 g-引)?匕“巴Z 2 d则介质分界面上所受的总力为卜U(a)=y E2(c2 一 5WK单位面积匕所受的力为这里/的参号方向由介质立指向介质釘。11试回答下列各问题:(1)等位面上的电位处处一样,因此面上各处的电场强度的数值也一样。这 句话对吗?试举例说明。(2)某处电位p = 0,因此那里的电场E= -V0 = 0o对吗?(3)甲处电位是10 000 V,乙处电位是10 V故甲处的电场强度大于乙处的 电场强度。对吗?答 此三问的内容基本一致,均是不正确的。静电场中电场强度是电位函 数的梯度,即电场
11、强度E是电位函数卩沿最大减小率方向的空间变化率。护的 数值大小与E的大小无关,因此甲处电位虽屋10000 V,大于乙处的电位,但并 不等于甲处的电场強度大于乙处的电场强度。在等位面上的电位均相等,只能 说明沿等位面切线方向,电位的变化率等于零,因此等佼面上任一点的电场强度 沿该面切线方向的分量尊于零,即 = 0。而电位函数沿等位面法线方向的变 化率并不一定等于零,即不一定为零,且数值也不一定相等。即使等位面上 卩=0,该面上任一点沿等位面法线方向电位函数的变化率也不一定等于零。例 如:静电场中导体表面为等位面,但导体表面上电场强度思垂直于导体表面,大 小与导体表面餌点的曲率半径有关,曲率半径越
12、小的地方电術面密度越大,电场 强度的数值也越大。1-5阳条电力线能否栢切?同一条电力线上任意两点的电位能否相零? 为什么?答 电力线的疏帯表示电场强度的弱或强,电力线披密,说明该处的场强越 大。因此若两条电力线相切,在切点处两条电力线无限靠近,即表示切点处的 场强越于无隈大,这是不符合实际的,所以电力线不能相切。因为JeJZ,说明同i条电力线上任意两点的电位不能相等,沿电力线 方向电位在减小。1-8在一不带电的导休球内,挖出-編心的球形空腔。(1)若在空腔中心放点电荷g,试问腔表面和球外表面上的电荷及腔内, 腔外各处的场强分别如何?2)若q不在空腔的中心,則腔表面和球外表面的电荷怎样分布?球外
13、的 场强怎样分布?(3)若点电荷q放在空腔中心,但在球外也放一点电荷,则腔表面和球表面 上电荷怎样分布?答仃)空腔表面均匀分布与点电荷电量相等但异号的面电荷。导体球的 外表面均匀分布与点电荷电量相等且同号的面电荷。腔内空间的电场强度为式中口为空腔中心(即点电荷所在处到腔内空间中任一点的距离。导体球内 各处电场强度均为零导体球外电场是均匀帶电导体球在空间产生的电场式中r为导体中心到球外空间任一点的距离。(2)点电荷q不在空腔中心时,则空腔表面分布着与点电荷q电量相等且 异号的非均匀的面电荷,在靠近点电荷附近的表面上,电荷分布的面密度大。此 时导体球外表面上的电何分布及球外空间中场的分布与(1)
14、M中此问题相同。3)若点电荷q仍放在空腔中心,球外也放-点电荷,则空腔表面上的电荷 分布与(I)问中此问题相同。此时导体球外表面上电荷分布不均匀,靠近球外点 电荷处,分布看非均匀的与球外点电荷异号的面电荷;远离球外点电荷处,分布 着非均匀的与球外点电荷同号的面电荷。但导体球外表面上分布的面电荷总量 仍与空腔内点电荷q的电员相等且同号。1HI两绝缘导体A和B带零呈异号电荷,现把第三个不带电的导体C 插入4、之间(不与它们接触),试问电位差必-切是増大还是滅小?(从能 屋观点分析)C答 导体的外表面将感应分布不均匀的面屯荷。靠近A导体的表面带 负电,靠近导体的表面带正电。插入的过程中,电场力作功,
15、人、H与外界无 联系(绝缘导体),所以电场能量要減小。故A、B之间的电位差弘-知要减 小。1-14在一个中性导体球壳的中心放-电荷址为q的点电荷,这时球壳内 外表面各带多少电荷:a?若把点电荷从球壳中心移到壳内其它点,球壳内外表 向上的电荷分布变不变?球壳内外的场强分布变不变?答 点电荷Q放在球心时,球壳内表而带有均匀分布的(-g)的电量,外表 面带有均匀分布的q电虽。若把点电荷移至壳内其它点,球壳外表面电荷分布 不变,球壳内表面分布的电荷仍是(的电量,但分布不均匀,靠近点电荷的内表面上的电荷面密度大于远离点电荷的内表面上的电荷面密度。球壳外的场 强分布不变,仍为E = -2et o球売内空间
16、电场分布改变了,町由镜像送求 4亦产得.1-16 说明E、D、P三个矢量的物理意义。E与介质有关,D与介质无 关的说法对吗?答E是电场强度,其物理意义在于是从力的角度描述静电场持性的物理 适。其定义为静电场中任一点单位正电荷所受到的电场力。D是电位移矢量,是一个辅助物理量,其本身并没有明确的物理意义,然而 引人它可以方便地表达出静电场中任一点的场量与场源之间的关系,即电位移 矢量的散度等于该点分布的自由电荷体密度。P是电极化强度,其物理恵义是描述电介质中任一点电极化强弱的物理E与介质有关D与介质无关的说法是不对的 E和D的分布均与介质有 关。但是穿过闭合曲面的D通量仅与该闭合面所包围的自由电荷
17、有关,而与介 质中的束缚电荷无关。1-17若屯场中放人电介质后,白由电荷分布未变,电介质中的场强大小 是否一定比真空中的场强小少答 不一定。只能说电介质中的场强比原來没放电介质时同一处真空中的 场强小。1-18有入说,均匀介质极化后不会产生体分侑的极化电荷,只是在介质 的表面上才出现面分布的极化电荷,若沟匀介质是无限大的,那么它的表血在无 限远处”那里.的极化电荷对考察点的场无影响,闪此均匀的无限人的电介质与真 空完全相同。你是否同意这种看法。答这种看法是错误的。举一反例说明。假设均匀介质是无限大的命题成 立,耍使介质极化,必要有外加电场,而外加电场屋由空间分布的自由电荷产生 的,这些自由电荷
18、会分布在均匀介质中,使均匀介质內部存在极化电荷体密度, 故与真空的情况不能相同。1-22有带电为q的球体,附近有一块介电常数为 的介质,如思考题1-22图所示。请问下列公式成立否?0 D - 罢,适用于计算电容器的储能。叭=寺jV卜$。甲dS适用于空间中有有限体电荷和面电荷分布情况下的计算,其中积分域v,S是 电荷分布的区域。We 二#适用于点电荷系统或导体系统储能的计算31We= 2 J VE Ddv说明静电能是储存在电场之中,适用于计算区域V内分布已知的情况。 静电能量密度W = - eb:2中,增人时,由于E的分布也会发生变化,因 此电场能星并非一定会增加。1-2两半径为e和b(a b)
19、的同心导体球面间电位差为。问:若&固 定,要使半径为Q的球面上场强最小,a与b的比值应是多少?解 由髙斯定律,容易求得同心球面间任一 r处的电场强度E为所以叫= 一丄儿 4nr2 4k I a A从中解得半径为a的球面上的场强为当&和匕)一定时,E(a)瞬a不同而变化但不是a的单调函数,它存在极值。 为了求出“取什么数值时,E(a)最小,则令由比可得2a - b =0h_2即a与b的比值应为0,5。1-3具有两层同轴介质的圆柱形电容器内导体的直径为2 cm,内层介质 的相对介电常数61 = 3,外层介质的相对介电常数 = 2,要便沥层介质中的最 大场强相等,并且内层介质所承受的电压和外层介质的
20、相等,问两层介质的厚度 各为多少?解设两层介质的交界面半径为a.外导隹內半径为4且内、外导体表面 单位长度上的电荷分别为*匸和- r则由髙斯定律可求得介质“和介质比中的电场分别为P根据题意,要使两层介质中的相等,由于P T F =噺_6亦忑农沪,比_4寸沪u = 1.5X10-Jm=1.5 cm 内、外层介质分别承受的电压为Ul (.5x10 2 仏0 4-jtsoln 1,5 X Iff 2 垠据题意,要使两层介质辰受的电压相等,即5二“2,故产-lnl -5 = In . ?&冗0 4恥0 1.5X 10 解之得& = 1,96 cm最后得介质1的厚度卫一 1,0= 1.5 1.0= 0.
21、5 m介质 2 的厚度 i6*-a-1.96_1.5 = 0.46cm1-4用双层电介质制成的同轴电缆如题1-4图所示;介电常数1=40, 2=2切;內、外导体单位长度上所带电荷分别为r和-厂。(1)起1-4图求两种电介质中以Rp&处的电场 強度与电通密度;(2)求两种电介质中的电极化強度;(3)问何处有极化电荷,并求其密度。解(1)应用高斯定律,不难求得电通密度为0 (血)D冷寿如心,0电场强度E =卫,故SR】)(2)由。二引E + P,得两种电介质中的电极化强度为診(RipR2)為S (7?2p后,拆去电源,问:(1) AC.CD ,BC间电用各为多少? C,D片上有无电荷? AC,CI
22、)tDB间 电场強度各为多少?(2) 若将CJ)两片用导线联结,再断开,重答(1)问;(3) 若充电前先联结C,f),然后依次拆去电源和0,0的联结线,再答(丄) 问;(4) 若继(2之后,又将两板用导线短接,再断开,重新回答(Q问。解 忽略边缘效应,作为均匀帯电的无限大平行板电容器來处理,各区域均 为均匀电场,方向垂宜于极板題I -6图Ubc - _ ( tCD + DB)= 纟充电到电压5后,E = E2二民,且Ei手+氏刍+ Em哥=5因此,有Eid = Uq所以E = E2 = E 尸弩ac = Us 二 - Ei y = -y各极板上的带电情况如题1 - 6图(b)所示,有m=oE严
23、号(2)若将C,D板用导线联结,C,D两板内侧的4刊与-巾将中和,有Ucd = 0 和 E2 =0这样,C,D板内侧的+刊与-刊将全部中和掉,而其它部分的电荷则由于电场 的作用以及电荷守恒(这时电源已拆去)都不变化。再断开联结线时也不会变 化,即有5c = % = Use - ( CCD 十 UiJH )=-律而A板、B板、C板和D板外侧的电荷也都保持不变。(3)由于住联结C.D时接有电源,电源的作用将强迫A,B板间电压Uab 像持在U0;C, D板被短接,强迫UCq=O。显然,E2 = 0,但同时为了又満足 LT/W = L70的条件,必须使*和E3增大,也即相应的电荷密度由5增大到 叫这时
24、,有E严虽和*所以严3势圧二。Unc = _( Ucd + 屉)=_ 学C,D板内侧没有电荷分布,血人板,板,C板和D板外侧的电荷密度都 由(1)问中的刚增大到叫 由于电场力的作用,依次拆去电源与C,D间的联 线时,情况不再变化。若在继问之后将短接,III于在的悄况下,1加=号5却, 因此人,两板上的电荷将逬行中和达到UAB=0的强制条件。而C,D板由于 与外界没有导线联接,电荷守恒,各自板上的总电荷保持不变,但会在内、外侧板 面间发生电荷转移。达到Uab = O后,一切电荷的转移将停止电荷分布如題1-6图0)所示。有J?2= _2Ei 二-%= C;i = El 卑二导,仏=左2刍=-Ubc
25、 - ( 口6 + Ujjr )二才由于电场力的作用,再断开A ,B联接线时,情况不变。1 -7半径为b的无限长圆柱中,有体密度为內的电荷,与它偏轴地放有 一半径为&的无限长圆柱空洞,两者的轴线距离为/。求空洞内的电场强度 (设在真空中)。(提示:可应用叠加原理)题1 -7图解 空湄可看成是密度为久(见题1 - 7图(b)和-內(见题1 - 7图(c)的 体电荷分布的叠加,而电场为原来电荷分布与空洞中密度为內的体电荷分布共| 同作用产生的场和由空洞中密度为-刊的体电荷分布单独产生的电场叠加而 得。在图b)中,空洞部分的电场可选取单位长度的同轴圆柱面作为高斯面,利 用高斯定律求得码二瓷 (0rR)有一电荷7o冋要在 球上加多少电荷才能使作用在电荷q上的力为零?解应屈球面镜像法,在球心处有一镜像电荷“ Rq =孑?另在球心与点电荷q的连线上,距球心虹二弓)处有一镜像电荷a,-Rq _y它们对点电荷g舲作用力即为导体球对点电荷q的作用力。为使作用在点电荷 q上的作用力为零,设在球心再加电荷Q.则点电荷7受的吸引力为P_ (Q 十 qqF_ 4翻2蔦说汇而令 F = 0解得一 2d2R3 - R51-15 一半径为a的球壳,同心地置于半径为b的球壳内,外壳接地。一
copyright@ 2008-2022 冰豆网网站版权所有
经营许可证编号:鄂ICP备2022015515号-1