ImageVerifierCode 换一换
格式:DOCX , 页数:51 ,大小:184.17KB ,
资源ID:5709161      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/5709161.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(第一章有理数.docx)为本站会员(b****5)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

第一章有理数.docx

1、第一章有理数第一章有理数导学案 主备:潘登辅备:刀国民、董坤、张发文、刀恒 时间:2012年8月28日科目 数学 编写人潘登 审核人刀国民 学案编号 101 班级 学生姓名_课题1.1 正数和 负数(1)课型新授课年级七年级单元第4单元课时第1课时学习目标1、掌握正数和负数概念;2、会区分两种不同意义的量,会用符号表示正数和负数;3、体验数学发展是生活实际的需要,激发学生学习数学的兴趣。学习重点正数和负数概念学习难点正数和负数概念学法指导自主探究合作交流知识链接1、小学里学过哪些数请写出来: 。2、阅读课本P1和P2三幅图(重点是三个例子,边阅读边思考)回答下面提出的问题:3、在生活中,仅有整

2、数和分数够用了吗?有没有比0小的数?如果有,那叫做什么数?课前导案自学1、正数与负数的产生 (1)、生活中具有相反意义的量如:运进5吨与运出3吨;上升7米与下降8米;向东50米与向西47米等都是生活中遇到的具有相反意义的量。请你也举一个具有相反意义量的例子: 。(2)负数的产生同样是生活和生产的需要2、正数和负数的表示方法(1)一般地,我们把上升、运进、零上、收入、前进、高出等规定为正的,而与它相反的量,如:下降、运出、零下、支出、后退、低于等规定为负的。正的量就用小学里学过的数表示,有时也在它前面放上一个“+”(读作正)号,如前面的5、7、50;负的量用小学学过的数前面放上“”(读作负)号来

3、表示,如上面的3、8、47。(2)活动 两个同学为一组,一同学任意说意义相反的两个量,另一个同学用正负数表示.(3)阅读P3练习前的内容3、正数、负数的概念1)大于0的数叫做 ,小于0的数叫做 。2)正数是大于0的数,负数是 的数,0既不是正数也不是负数。【课堂练习】: 1. P3第一题到第四题(直接做在课本上)。 2小明的姐姐在银行工作,她把存入3万元记作+3万元,那么支取2万元应记作_,-4万元表示_。3已知下列各数:,3.14,+3065,0,-239; 则正数有_;负数有_。4下列结论中正确的是 ( ) A0既是正数,又是负数 BO是最小的正数 C0是最大的负数 D0既不是正数,也不是

4、负数 5给出下列各数:-3,0,+5,+3.1,2004,+2010; 其中是负数的有 ( ) A2个 B3个 C4个 D5个要点归纳正数、负数的概念:(1)大于0的数叫做 ,小于0的数叫做 。(2)正数是大于0的数,负数是 的数,0既不是正数也不是负数。课前导案自学1、正数与负数的产生 (1)、生活中具有相反意义的量如:运进5吨与运出3吨;上升7米与下降8米;向东50米与向西47米等都是生活中遇到的具有相反意义的量。请你也举一个具有相反意义量的例子: 。(2)负数的产生同样是生活和生产的需要2、正数和负数的表示方法(1)一般地,我们把上升、运进、零上、收入、前进、高出等规定为正的,而与它相反

5、的量,如:下降、运出、零下、支出、后退、低于等规定为负的。正的量就用小学里学过的数表示,有时也在它前面放上一个“+”(读作正)号,如前面的5、7、50;负的量用小学学过的数前面放上“”(读作负)号来表示,如上面的3、8、47。(2)活动 两个同学为一组,一同学任意说意义相反的两个量,另一个同学用正负数表示.(3)阅读P3练习前的内容3、正数、负数的概念1)大于0的数叫做 ,小于0的数叫做 。2)正数是大于0的数,负数是 的数,0既不是正数也不是负数。【课堂练习】: 1. P3第一题到第四题(直接做在课本上)。 2小明的姐姐在银行工作,她把存入3万元记作+3万元,那么支取2万元应记作_,-4万元

6、表示_。3已知下列各数:,3.14,+3065,0,-239; 则正数有_;负数有_。4下列结论中正确的是 ( ) A0既是正数,又是负数 BO是最小的正数 C0是最大的负数 D0既不是正数,也不是负数 5给出下列各数:-3,0,+5,+3.1,2004,+2010; 其中是负数的有 ( ) A2个 B3个 C4个 D5个要点归纳正数、负数的概念:(1)大于0的数叫做 ,小于0的数叫 。(2)正数是大于0的数,负数是 的数,0既不是正数也不是负数。课中小组合作交流课前学习内容,互帮互助,提高学习思想,掌握多变的学习方法;班级展示提出自己做题的见解和方法,共享成果;质疑探究提出自己的疑问,运用集

7、体智慧,共同解决;自悟自得通过以上过程,分析自己在知识、思想方面的经验和教训;测评反馈1零下15,表示为_,比O低4的温度是_。2地图上标有甲地海拔高度30米,乙地海拔高度为20米,丙地海拔高度为-5米,其中最高处为_地,最低处为_地3“甲比乙大-3岁”表示的意义是_。4如果海平面的高度为0米,一潜水艇在海水下40米处航行,一条鲨鱼在潜水艇上方10米处游动,试用正负数分别表示潜水艇和鲨鱼的高度。科目 数学 编写人 潘登 审核人刀国民 学案编号 102 班级 118 学生姓名_课题1.1正数和负数(2)课型新授课年级七年级单元第4单元课时第2课时学习目标1、会用正、负数表示具有相反意义的量;2、

8、通过正、负数学习,培养学生应用数学知识的意识;学习重点用正、负数表示具有相反意义的量;学习难点实际问题中的数量关系;学法指导自主探究合作交流知识链接通过上节课的学习,我们知道在实际生产和生活中存在着两种不同意义的量,为了区分它们,我们用_ 和_ 来分别表示它们。问题:“零”为什么即不是正数也不是负数呢?引导学生思考讨论,借助举例说明。参考例子:温度表示中的零上,零下和零度。课前导案自学问题:(课本第4页例题)先引导学生分析,再让学生独立完成例 (1)一个月内,小明体重增加2kg,小华体重减少1kg,小强体重无变化,写出他们这个月的体重增长值;2)2001年下列国家的商品进出口总额比上一年的变化

9、情况是:美国减少6.4%, 德国增长1.3%,法国减少2.4%, 英国减少3.5%,意大利增长0.2%, 中国增长7.5%.写出这些国家2001年商品进出口总额的增长率;解:(1)这个月小明体重增长_ ,小华体重增长_ ,小强体重增长_ ;2)六个国家2001年商品进出口总额的增长率:美国_ 德国_ 法国_ 英国_ 意大利_【课堂练习】1课本第4页练习2、阅读思考 (课本第8页)用正负数表示加工允许误差; 问题:直径为30.032mm和直径为29.97的零件是否合格?【要点归纳】1、本节课你有那些收获?2、还有没解决的问题吗?课中小组合作交流课前学习内容,互帮互助,提高学习思想,掌握多变的学习

10、方法;班级展示提出自己做题的见解和方法,共享成果;质疑探究提出自己的疑问,运用集体智慧,共同解决;自悟自得通过以上过程,分析自己在知识、思想方面的经验和教训;测评反馈1)甲冷库的温度是-12C,乙冷库的温度比甲冷酷低5C,则乙冷库的温度是 ;2)一种零件的内径尺寸在图纸上是90.05(单位:mm),表示这种零件的标准尺寸是9mm,加工要求最大不超过标准尺寸多少?最小不小于标准尺寸多少?课后课后反思科目 数学 编写人 潘登 审核人 刀国民 学案编 号103 班级 姓名_课题1.2.1 有理数课型新授课年级七年级单元第4单元课时第3课时学习目标1、掌握有理数的概念,会对有理数按一定标准进行分类,培

11、养分类能力;2、了解分类的标准与集合的含义;3、体验分类是数学上常用的处理问题方法; 学习重点正确理解有理数的概念学习难点正确理解分类的标准和按照一定标准分类学法指导自主探究合作交流知识链接1、通过两节课的学习,那么你能写出3个不同类的数吗?.(4名学生板书)_课前导案自学问题1:观察黑板上的12个数,我们将这4位同学所写的数做一下分类;该分为几类,又该怎样分呢?先分组讨论交流,再写出来 分为 类,分别是 引导归纳: 统称为整数, 统称为有理数。问题2:我们是否可以把上述数分为两类?如果可以,应分为哪两类?师生共同交流、归纳 2、正数集合与负数集合所有的正数组成 集合,所有的负数组成 集合【课

12、堂练习】1、P8练习(做在课本上)2.把下列各数填入它所属于的集合的圈内:15, -, -5, , , 0.1, -5.32, -80, 123, 2.333;正整数集合 负整数集合正分数集合 负分数集合【要点归纳】: 有理数分类 或者课中小组合作交流课前学习内容,互帮互助,提高学习思想,掌握多变的学习方法;班级展示提出自己做题的见解和方法,共享成果;质疑探究提出自己的疑问,运用集体智慧,共同解决;自悟自得通过以上过程,分析自己在知识、思想方面的经验和教训;测评反馈1、下列说法中不正确的是( )A-3.14既是负数,分数,也是有理数 B0既不是正数,也不是负数,但是整数c-2000既是负数,也

13、是整数,但不是有理数 DO是正数和负数的分界2、在下表适当的空格里画上“”号有理数整数分数正整数负分数自然数-8是-2.25是是0是课后课后反思科目数学 编写人 潘登 审核人 刀国民 学案编号 104 班级 118 姓名_课题1.2.2数轴课型新授课年级七年级单元第4单元课时第_4课时学习目标1、掌握数轴概念,理解数轴上的点和有理数的对应关系;2、会正确地画出数轴,利用数轴上的点表示有理数;3、领会数形结合的重要思想方法;学习重点数轴的概念与用数轴上的点表示有理数学习难点数轴的概念与用数轴上的点表示有理数学法指导自主探究合作交流知识链接观察下面的温度计,读出温度.分别是 C、 C、 C; 课前

14、导案自学1、在一条东西向的马路上,有一个汽车站,汽车站东3m和7.5m处分别有一棵柳树和一棵杨树,汽车站西3m和4.8m处分别有一棵槐树和一根电线杆,试画图表示这一情境? 汽车站 东 请同学们分小组讨论,交流合作,动手操作2、由上面的两个问题,你受到了什么启发?能用直线上的点来表示有理数吗?3、自己动手操作,看看可以表示有理数的直线必须满足什么条件?引导归纳:1)、画数轴需要三个条件,即 、 方向和 长度。2)数轴【课堂练习】1、请你画好一条数轴 2、利用上面的数轴表示下列有理数 1.5, 2, 2, 2.5, , 0;3、 写出数轴上点A,B,C,D,E所表示的数:寻找规律1、观察上面数轴,

15、哪些数在原点的左边,哪些数在原点的右边,由此你有什么发现? 2、每个数到原点的距离是多少?由此你又有什么发现? 3、进一步引导学生完成P9归纳课中小组合作交流课前学习内容,互帮互助,提高学习思想,掌握多变的学习方法;班级展示提出自己做题的见解和方法,共享成果;质疑探究提出自己的疑问,运用集体智慧,共同解决;自悟自得通过以上过程,分析自己在知识、思想方面的经验和教训;测评反馈1、在数轴上,表示数-3,2.6, ,0, , ,-1的点中,在原点左边的点有 个。2、在数轴上点A表示-4,如果把原点O向正方向移动1个单位,那么在新数轴上点A表示的数是( )A.-5, B.-4 C.-3 D.-2 3、

16、你觉得数轴上的点表示数的大小与点的位置有什么关系?课后课后反思科目 数学 编写人 潘登 审核 刀国民 学案编号 105 班级 姓名_ 课题1.2.3 相反数课型新授课年级七年级单元第4单元课时第_5_课时学习目标1、掌握相反数的意义;2、掌握求一个已知数的相反数;3、体验数形结合思想;学习重点求一个已知数的相反数;学习难点根据相反数的意义化简符号学法指导自主探究合作交流知识链接1、数轴的三要素是什么?在下面画出一条数轴:2、在上面的数轴上描出表示5、2、5、+2 这四个数的点。3、观察上图并填空: 数轴上与原点的距离是2的点有 个,这些点表示的数是 ;与原点的距离是5的点有 个,这些点表示的数

17、是 。从上面问题可以看出,一般地,如果a是一个正数,那么数轴上与原点的距离是a的点有两个,即一个表示a,另一个是 ,它们分别在原点的左边和右边,我们说,这两点关于原点对称。课前导案自学自学课本第10页的内容并填空: 1、相反数的概念像2和2、5和5、3和3这样,只有 不同的两个数叫做互为相反数。2、练习(1)、2.5的相反数是 ,和 是互为相反数, 的相反数是2010;(2)、a和 互为相反数,也就是说,a是 的相反数例如a=7时,a=7,即7的相反数是7.a=5时,a=(5),“(5)”读作“5的相反数”,而5的相反数是5,所以,(5)=5你发现了吗,在一个数的前面添上一个“”号,这个数就成

18、了原数的 (3)简化符号:(0.75)= ,(68)= ,(0.5 )= ,(3.8)= ;(4)、0的相反数是 .3、数轴上表示相反数的两个点和原点的距离 。【课堂练习】 P11第1、2、3题课中小组合作交流课前学习内容,互帮互助,提高学习思想,掌握多变的学习方法;班级展示提出自己做题的见解和方法,共享成果;质疑探究提出自己的疑问,运用集体智慧,共同解决;自悟自得通过以上过程,分析自己在知识、思想方面的经验和教训;测评反馈1.在数轴上标出3,1.5,0各数与它们的相反数。2.1.6的相反数是 ,2x的相反数是 ,a-b的相反数是 ;3. 相反数等于它本身的数是 ,相反数大于它本身的数是 4.

19、填空:(1)如果a13,那么a ;(2)如果-a5.4,那么a ;(3)如果x6,那么x ;(4)x9,那么x ;5.数轴上表示互为相反数的两个数的点之间的距离为10,求这两个数。课后课后反思科目 数学 编写人 潘登 审核人 刀国民 学案编号 106 班级 119 姓名_课题1.2.4绝对值课型新授课年级七年级单元第4单元课时第_6_课时学习目标1、理解、掌握绝对值概念.体会绝对值的作用与意义;2、掌握求一个已知数的绝对值和有理数大小比较的方法;3、体验运用直观知识解决数学问题的成功;学习重点绝对值的概念与两个负数的大小比较学习难点绝对值的概念与两个负数的大小比较学法指导自主探究合作交流知识链

20、接一、知识链接问题:如下图小红和小明从同一处O出发,分别向东、西方向行走10米,他们行走的路线 (填相同或不相同),他们行走的距离(即路程远近) 课前导案自学1、由上问题可以知道,10到原点的距离是 ,10到原点的距离也是 。到原点的距离等于10的数有 个,它们的关系是一对 。这时我们就说10的绝对值是10,10的绝对值也是10;例如,3.8的绝对值是3.8;17的绝对值是17;6的绝对值是 一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值,记作a。2、练习(1)、式子-5.7表示的意义是 。(2)、2的绝对值表示它离开原点的距离是 个单位,记作 ;(3)、24= . 3.1= ,= ,

21、0= ;3、思考、交流、归纳由绝对值的定义可知:一个正数的绝对值是 ;一个负数的绝对值是它的 ;0的绝对值是 。用式子表示就是:1)、当a是正数(即a0)时,a= ;2)、当a是负数(即a0)时,a= ;3)、当a=0时,a= ;4、随堂练习 P12第1、2大题(直接做在课本上)5、阅读思考,发现新知阅读P12问题P13第12行,你有什么发现吗?在数轴上表示的两个数,右边的数总要 左边的数。也就是:1)、正数 0,负数 0,正数大于负数。2)、两个负数,绝对值大的 。测评反馈1、比较下列各对数的大小:3和5; 2.5和2.252如果,则的取值范围是 ( ) AO BO CO DO3,则;,则4

22、如果,则,5绝对值等于其相反数的数一定是( ) A负数 B正数 C负数或零 D正数或零6给出下列说法:互为相反数的两个数绝对值相等;绝对值等于本身的数只有正数;不相等的两个数绝对值不相等; 绝对值相等的两数一定相等其中正确的有( ) A0个 B1个 C2个 D3个科目数学 编写人 潘登 审核人 刀国民 学案编号 107 班级 姓名_课题1.3.1有理数的加法(1)课型新授课年级七年级单元第4单元课时第7课时学习目标1、理解有理数加法意义,掌握有理数加法法则,会正确进行有理数加法运算;2、会利用有理数加法运算解决简单的实际问题;学习重点有理数加法法则学习难点异号两数相加学法指导自主探究合作交流知

23、识链接1、正有理数及0的加法运算,小学已经学过,然而实际问题中做加法运算的数有可能超出正数范围。例如,足球循环赛中,可以把进球数记为正数,失球数记为负数,它们的和叫做净胜球数。如果,红队进4个球,失2个球;蓝队进1个球,失1个球。于是红队的净胜球数为 4(2),蓝队的净胜球数为 1(1)。这里用到正数和负数的加法。那么,怎样计算4(2)下面我们一起借助数轴来讨论有理数的加法。课前导案自学1、借助数轴来讨论有理数的加法1)如果规定向东为正,向西为负,那么一个人向东走4米,再向东走2米,两次共向东走了 米,这个问题用算式表示就是: 2)如果规定向东为正,向西为负,那么一个人向西走2米,再向西走4米

24、,两次共向西走多少米?很明显,两次共向西走了 米。这个问题用算式表示就是: 如图所示: 3) 如果向西走2米,再向东走4米, 那么两次运动后,这个人从起点向东走了 米,写成算式就是 这个问题用数轴表示如下图所示:4)利用数轴,求以下情况时这个人两次运动的结果:先向东走3米,再向西走5米,这个人从起点向( )走了( )米;先向东走5米,再向西走5米,这个人从起点向( )走了( )米;先向西走5米,再向东走5米,这个人从起点向( )走了( )米。写出这三种情况运动结果的算式 5)如果这个人第一秒向东(或向西)走5米,第二秒原地不动,两秒后这个人从起点向东(或向西)运动了 米。写成算式就是 2、师生

25、归纳两个有理数相加的几种情况。3你能从以上几个算式中发现有理数加法的运算法则吗?有理数加法法则(1)同号的两数相加,取 的符号,并把 相加。(2)绝对值不相等的异号两数相加,取 的加数的符号,并用较大的绝对值 较小的绝对值. 互为相反数的两个数相加得 ;(3)一个数同0相加,仍得 。4.新知应用 例1 计算(自己动动手吧!) (1) (3)(9); (2) (4.7)3.9.例2 (自己独立完成)【课堂练习】:1填空:(口答) (1)(4)+(6)= ; (2)3(8)= ;(4)7(7)= ; (4)(9)1 = ;(5)(6)+0 = ; (6)0+(3) = ; 2. 课本P18第1、2题【要点归纳】:有理数加法法则:课中小组合作交流课前学习内容,互帮互助,提高学习思想,掌握多变的学习方法;班级展示提出自己做题的见解和方法,共享成果;质疑探究提出自己的疑问,运用集体智慧,共同解决;自悟自得通过以上过程,分析自己在知识、思想方面的经验和教训;测评反馈课后课后反思科目 数学 编写人 潘登 审核人刀国民 学案编号 108 班级 118 姓名_课题1.3.1有理数的加法(2)课型新授课年级七年级单元第4单元课时第_8_课时学习目标掌握

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1