ImageVerifierCode 换一换
格式:DOCX , 页数:23 ,大小:60.72KB ,
资源ID:5231081      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/5231081.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(最新北师大版学年数学九年级上册《一元二次方程》单元测试题1及答案解析精品试题.docx)为本站会员(b****6)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

最新北师大版学年数学九年级上册《一元二次方程》单元测试题1及答案解析精品试题.docx

1、最新北师大版学年数学九年级上册一元二次方程单元测试题1及答案解析精品试题北师大版九年级数学上册单元试测试:第2章 一元二次方程一、选择题(共18小题)1一元二次方程x24x+5=0的根的情况是()A有两个不相等的实数根 B有两个相等的实数根C只有一个实数根 D没有实数根2下列关于x的方程有实数根的是()Ax2x+1=0 Bx2+x+1=0 C(x1)(x+2)=0 D(x1)2+1=03关于x的一元二次方程x23x+m=0有两个不相等的实数根,则实数m的取值范围为()A B C D4若关于x的一元二次方程x22x+kb+1=0有两个不相等的实数根,则一次函数y=kx+b的大致图象可能是()A

2、B C D5关于x的一元二次方程(m2)x2+2x+1=0有实数根,则m的取值范围是()Am3 Bm3 Cm3且m2 Dm3且m26已知关于x的方程x22x+3k=0有两个不相等的实数根,则k的取值范围是()Ak Bk Ck且k0 Dk且k07关于x的一元二次方程kx2+2x+1=0有两个不相等的实数根,则k的取值范围是()Ak1 Bk1 Ck0 Dk1且k08已知一元二次方程2x25x+3=0,则该方程根的情况是()A有两个不相等的实数根 B有两个相等的实数根C两个根都是自然数 D无实数根9若一元二次方程x2+2x+a=0的有实数解,则a的取值范围是()Aa1 Ba4 Ca1 Da110(2

3、014兰州)一元二次方程ax2+bx+c=0(a0)有两个不相等的实数根,则b24ac满足的条件是()Ab24ac=0 Bb24ac0 Cb24ac0 Db24ac011若+|n2|=0,且关于x的一元二次方程ax2+mx+n=0有实数根,则a的取值范围是()Aa8 Ba8且a0 Ca8 Da8且a012下列方程没有实数根的是()Ax2+4x=10 B3x2+8x3=0 Cx22x+3=0 D(x2)(x3)=1213一元二次方程x22x+m=0总有实数根,则m应满足的条件是()Am1 Bm=1 Cm1 Dm114若a满足不等式组,则关于x的方程(a2)x2(2a1)x+a+=0的根的情况是(

4、)A有两个不相等的实数根 B有两个相等的实数根C没有实数根 D以上三种情况都有可能15一元二次方程2x2+3x+1=0的根的情况是()A有两个不相等的实数根 B有两个相等的实数根C没有实数根 D无法确定16下列一元二次方程中,有两个相等实数根的是()Ax28=0 B2x24x+3=0 C9x2+6x+1=0 D5x+2=3x217下列一元二次方程有两个相等实数根的是()Ax22x+1=0 B2x2x+1=0 C4x22x3=0 Dx26x=018下列方程中,没有实数根的是()Ax24x+4=0 Bx22x+5=0 Cx22x=0 Dx22x3=0二、填空题(共8小题)19已知k0,且关于x的方

5、程3kx2+12x+k+1=0有两个相等的实数根,那么k的值等于20关于x的一元二次方程x2x+m=O没有实数根,则m的取值范围是21已知关于x的一元二次方程x2+2x+m=0有实数根,则m的取值范围是22关于x的一元二次方程ax2+bx+=0有两个相等的实数根,写出一组满足条件的实数a,b的值:a=,b=23已知关于x的方程x22x+a=0有两个实数根,则实数a的取值范围是24若一元二次方程(m1)x24x5=0没有实数根,则m的取值范围是25关于x的一元二次方程x2+a=0没有实数根,则实数a的取值范围是26已知关于x的一元二次方程x22xk=0有两个相等的实数根,则k值为三、解答题(共4

6、小题)27已知关于x的一元二次方程(x1)(x4)=p2,p为实数(1)求证:方程有两个不相等的实数根;(2)p为何值时,方程有整数解(直接写出三个,不需说明理由)28已知关于x的方程(k1)x2(k1)x+=0有两个相等的实数根,求k的值29已知关于x的一元二次方程mx2+mx+m1=0有两个相等的实数根(1)求m的值;(2)解原方程30已知关于x的一元二次方程mx2(m+2)x+2=0(1)证明:不论m为何值时,方程总有实数根;(2)m为何整数时,方程有两个不相等的正整数根北师大版九年级数学上册单元试测试:第2章 一元二次方程参考答案与试题解析一、选择题(共18小题)1一元二次方程x24x

7、+5=0的根的情况是()A有两个不相等的实数根 B有两个相等的实数根C只有一个实数根 D没有实数根【考点】根的判别式【分析】把a=1,b=4,c=5代入=b24ac进行计算,根据计算结果判断方程根的情况【解答】解:a=1,b=4,c=5,=b24ac=(4)2415=40,所以原方程没有实数根故选:D【点评】本题考查了一元二次方程ax2+bx+c=0(a0,a,b,c为常数)的根的判别式=b24ac当0,方程有两个不相等的实数根;当=0,方程有两个相等的实数根;当0,方程没有实数根2下列关于x的方程有实数根的是()Ax2x+1=0 Bx2+x+1=0 C(x1)(x+2)=0 D(x1)2+1

8、=0【考点】根的判别式【专题】计算题【分析】分别计算A、B中的判别式的值;根据判别式的意义进行判断;利用因式分解法对C进行判断;根据非负数的性质对D进行判断【解答】解:A、=(1)2411=30,方程没有实数根,所以A选项错误;B、=12411=30,方程没有实数根,所以B选项错误;C、x1=0或x+2=0,则x1=1,x2=2,所以C选项正确;D、(x1)2=1,方程左边为非负数,方程右边为0,所以方程没有实数根,所以D选项错误故选:C【点评】本题考查了一元二次方程ax2+bx+c=0(a0)的根的判别式=b24ac:当0,方程有两个不相等的实数根;当=0,方程有两个相等的实数根;当0,方程

9、没有实数根3关于x的一元二次方程x23x+m=0有两个不相等的实数根,则实数m的取值范围为()A B C D【考点】根的判别式【专题】判别式法【分析】先根据判别式的意义得到=(3)24m0,然后解不等式即可【解答】解:根据题意得=(3)24m0,解得m故选:B【点评】本题考查了一元二次方程ax2+bx+c=0(a0)的根的判别式=b24ac:当0,方程有两个不相等的实数根;当=0,方程有两个相等的实数根;当0,方程没有实数根4若关于x的一元二次方程x22x+kb+1=0有两个不相等的实数根,则一次函数y=kx+b的大致图象可能是()A B C D【考点】根的判别式;一次函数的图象【分析】根据一

10、元二次方程x22x+kb+1=0有两个不相等的实数根,得到判别式大于0,求出kb的符号,对各个图象进行判断即可【解答】解:x22x+kb+1=0有两个不相等的实数根,=44(kb+1)0,解得kb0,Ak0,b0,即kb0,故A不正确;Bk0,b0,即kb0,故B正确;Ck0,b0,即kb0,故C不正确;Dk0,b=0,即kb=0,故D不正确;故选:B【点评】本题考查的是一元二次方程根的判别式和一次函数的图象,一元二次方程根的情况与判别式的关系:(1)0方程有两个不相等的实数根;(2)=0方程有两个相等的实数根;(3)0方程没有实数根5关于x的一元二次方程(m2)x2+2x+1=0有实数根,则

11、m的取值范围是()Am3 Bm3 Cm3且m2 Dm3且m2【考点】根的判别式;一元二次方程的定义【分析】根据一元二次方程ax2+bx+c=0(a0)的根的判别式=b24ac的意义得到m20且0,即224(m2)10,然后解不等式组即可得到m的取值范围【解答】解:关于x的一元二次方程(m2)x2+2x+1=0有实数根,m20且0,即224(m2)10,解得m3,m的取值范围是 m3且m2故选:D【点评】本题考查了一元二次方程ax2+bx+c=0(a0)的根的判别式=b24ac:当0,方程有两个不相等的实数根;当=0,方程有两个相等的实数根;当0,方程没有实数根6已知关于x的方程x22x+3k=

12、0有两个不相等的实数根,则k的取值范围是()Ak Bk Ck且k0 Dk且k0【考点】根的判别式【专题】计算题【分析】根据方程有两个不相等的实数根,得到根的判别式大于0,即可求出k的范围【解答】解:方程x22x+3k=0有两个不相等的实数根,=412k0,解得:k故选A【点评】此题考查了根的判别式,熟练掌握根的判别式的意义是解本题的关键7关于x的一元二次方程kx2+2x+1=0有两个不相等的实数根,则k的取值范围是()Ak1 Bk1 Ck0 Dk1且k0【考点】根的判别式;一元二次方程的定义【分析】在判断一元二次方程根的情况的问题中,必须满足下列条件:(1)二次项系数不为零;(2)在有不相等的

13、实数根时,必须满足=b24ac0【解答】解:依题意列方程组,解得k1且k0故选D【点评】本题考查了一元二次方程根的判别式的应用切记不要忽略一元二次方程二次项系数不为零这一隐含条件8已知一元二次方程2x25x+3=0,则该方程根的情况是()A有两个不相等的实数根 B有两个相等的实数根C两个根都是自然数 D无实数根【考点】根的判别式【分析】判断上述方程的根的情况,只要看根的判别式=b24ac的值的符号就可以了【解答】解:a=2,b=5,c=3,=b24ac=(5)2423=10,方程有两个不相等的实数根故选:A【点评】此题主要考查了一元二次方程根的判别式,掌握一元二次方程根的情况与判别式的关系:(

14、1)0方程有两个不相等的实数根;(2)=0方程有两个相等的实数根;(3)0方程没有实数根,是解决问题的关键9若一元二次方程x2+2x+a=0的有实数解,则a的取值范围是()Aa1 Ba4 Ca1 Da1【考点】根的判别式【分析】若一元二次方程x2+2x+a=0的有实数解,则根的判别式0,据此可以列出关于a的不等式,通过解不等式即可求得a的值【解答】解:因为关于x的一元二次方程有实根,所以=b24ac=44a0,解之得a1故选C【点评】本题考查了一元二次方程ax2+bx+c=0(a0,a,b,c为常数)根的判别式当0,方程有两个不相等的实数根;当=0,方程有两个相等的实数根;当0,方程没有实数根

15、10一元二次方程ax2+bx+c=0(a0)有两个不相等的实数根,则b24ac满足的条件是()Ab24ac=0 Bb24ac0 Cb24ac0 Db24ac0【考点】根的判别式【分析】已知一元二次方程的根的情况,就可知根的判别式=b24ac值的符号【解答】解:一元二次方程有两个不相等的实数根,=b24ac0故选:B【点评】总结:一元二次方程根的情况与判别式的关系:(1)0方程有两个不相等的实数根;(2)=0方程有两个相等的实数根;(3)0方程没有实数根11若+|n2|=0,且关于x的一元二次方程ax2+mx+n=0有实数根,则a的取值范围是()Aa8 Ba8且a0 Ca8 Da8且a0【考点】

16、根的判别式;非负数的性质:绝对值;非负数的性质:算术平方根;一元二次方程的定义【分析】先由非负数的性质求出m与n的值,再根据关于x的一元二次方程ax2+mx+n=0有实数根及一元二次方程的定义,即可得判别式0,a0,继而可求得a的范围【解答】解: +|n2|=0,m8=0,n2=0,m=8,n=2,关于x的一元二次方程ax2+mx+n=0,即ax2+8x+2=0有实数根,=b24ac=824a2=648a0,解得:a8,方程ax2+8x+2=0是一元二次方程,a0,a的范围是:a8且a0故选D【点评】此题考查了一元二次方程判别式的知识此题比较简单,注意掌握一元二次方程有实数根,即可得0同时考查

17、了非负数的性质与一元二次方程的定义12下列方程没有实数根的是()Ax2+4x=10 B3x2+8x3=0 Cx22x+3=0 D(x2)(x3)=12【考点】根的判别式【专题】判别式法【分析】分别计算出判别式=b24ac的值,然后根据的意义分别判断即可【解答】解:A、方程变形为:x2+4x10=0,=4241(10)=560,所以方程有两个不相等的实数根,故A选项不符合题意;B、=8243(3)=1000,所以方程有两个不相等的实数根,故B选项不符合题意;C、=(2)2413=80,所以方程没有实数根,故C选项符合题意;D、方程变形为:x25x6=0,=5241(6)=490,所以方程有两个不

18、相等的实数根,故D选项不符合题意故选:C【点评】本题考查了一元二次方程ax2+bx+c=0(a0,a,b,c为常数)的根的判别式=b24ac当0,方程有两个不相等的实数根;当=0,方程有两个相等的实数根;当0,方程没有实数根13一元二次方程x22x+m=0总有实数根,则m应满足的条件是()Am1 Bm=1 Cm1 Dm1【考点】根的判别式【分析】根据根的判别式,令0,建立关于m的不等式,解答即可【解答】解:方程x22x+m=0总有实数根,0,即44m0,4m4,m1故选:D【点评】本题考查了根的判别式,一元二次方程根的情况与判别式的关系:(1)0方程有两个不相等的实数根;(2)=0方程有两个相

19、等的实数根;(3)0方程没有实数根14若a满足不等式组,则关于x的方程(a2)x2(2a1)x+a+=0的根的情况是()A有两个不相等的实数根 B有两个相等的实数根C没有实数根 D以上三种情况都有可能【考点】根的判别式;一元一次方程的解;解一元一次不等式组【分析】求出a的取值范围,表示出已知方程根的判别式,判断得到根的判别式的值小于0,可得出方程没有实数根【解答】解:解不等式组得a3,=(2a1)24(a2)(a+)=2a+5,a3,=2a+50,方程(a2)x2(2a1)x+a+=0没有实数根,故选C【点评】此题考查了解一元一次不等式组,一元二次方程根的判别式,根的判别式的值大于0,方程有两

20、个不相等的实数根;根的判别式的值等于0时,方程有两个相等的实数根;根的判别式的值小于0时,方程无实数根15一元二次方程2x2+3x+1=0的根的情况是()A有两个不相等的实数根 B有两个相等的实数根C没有实数根 D无法确定【考点】根的判别式【分析】先求出的值,再判断出其符号即可【解答】解:=32421=10,方程有两个不相等的实数根故选A【点评】本题考查的是根的判别式,熟知一元二次方程ax2+bx+c=0(a0)的根与的关系是解答此题的关键16下列一元二次方程中,有两个相等实数根的是()Ax28=0 B2x24x+3=0 C9x2+6x+1=0 D5x+2=3x2【考点】根的判别式【分析】分别

21、计算四个方程的判别式的值,然后根据判别式的意义判断各方程根的情况【解答】解:A、x28=0,这里a=1,b=0,c=8,=b24ac=0241(8)=320,方程有两个不相等的实数根,故本选项错误;B、2x24x+3=0,这里a=2,b=4,c=3,=b24ac=(4)2423=80,方程没有实数根,故本选项错误;C、9x2+6x+1=0,这里a=9,b=6,c=1,=b24ac=62491=0,方程有两个相等的实数根,故本选项正确;D、5x+2=3x2,3x25x2=0,这里a=3,b=5,c=2,=b24ac=(5)243(2)=490,方程有两个不相等的实数根,故本选项错误;故选C【点评

22、】本题考查了一元二次方程ax2+bx+c=0(a0)的根的判别式=b24ac:当0,方程有两个不相等的实数根;当=0,方程有两个相等的实数根;当0,方程没有实数根17下列一元二次方程有两个相等实数根的是()Ax22x+1=0 B2x2x+1=0 C4x22x3=0 Dx26x=0【考点】根的判别式【分析】根据一元二次方程根的判别式判断即可【解答】解:A、=44=0,方程x22x+1=0有两个相等实数根;B、=1420,方程2x2x+1=0无实数根;C、=4+443=520,方程4x22x3=0有两个不相等实数根;D、=360,方程x26x=0有两个不相等实数根;故选A【点评】本题考查了一元二次

23、方程根的判别式,一元二次方程根的情况与判别式的关系:(1)0方程有两个不相等的实数根;(2)=0方程有两个相等的实数根;(3)0方程没有实数根18下列方程中,没有实数根的是()Ax24x+4=0 Bx22x+5=0 Cx22x=0 Dx22x3=0【考点】根的判别式【分析】利用判别式分别判定即可得出答案【解答】解:A、x24x+4=0,=1616=0有相同的根;B、x22x+5=0,=4200没有实数根;C、x22x=0,=400有两个不等实数根;D、x22x3=0,=4+120有两个不等实数根故选:B【点评】本题主要考查了根的判别式,解题的关键是熟记判别式的公式二、填空题(共8小题)19已知

24、k0,且关于x的方程3kx2+12x+k+1=0有两个相等的实数根,那么k的值等于3【考点】根的判别式【分析】若一元二次方程有两个相等的实数根,则根的判别式=b24ac=0,据此可列出关于k的等量关系式,即可求得k的值【解答】解:关于x的方程3kx2+12x+k+1=0有两个相等的实数根,=b24ac=14443k(k+1)=0,解得k=4或3,k0,k=3故答案为3【点评】本题考查了根的判别式,一元二次方程ax2+bx+c=0(a0)的根与=b24ac有如下关系:(1)0方程有两个不相等的实数根;(2)=0方程有两个相等的实数根;(3)0方程没有实数根20关于x的一元二次方程x2x+m=O没

25、有实数根,则m的取值范围是m【考点】根的判别式【分析】根据方程没有实数根,得到根的判别式小于0列出关于m的不等式,求出不等式的解集即可得到m的范围【解答】解:根据方程没有实数根,得到=b24ac=14m0,解得:m故答案为:m【点评】此题考查了根的判别式,根的判别式大于0,方程有两个不相等的实数根;根的判别式等于0,方程有两个相等的实数根;根的判别式小于0,方程没有实数根21已知关于x的一元二次方程x2+2x+m=0有实数根,则m的取值范围是m1【考点】根的判别式【专题】探究型【分析】先根据一元二次方程x2+2x+m=0得出a、b、c的值,再根据方程有实数根列出关于m的不等式,求出m的取值范围

26、即可【解答】解:由一元二次方程x2+2x+m=0可知a=1,b=2,c=m,方程有实数根,=224m0,解得m1故答案为:m1【点评】本题考查的是一元二次方程根的判别式,根据题意列出关于m的不等式是解答此题的关键22关于x的一元二次方程ax2+bx+=0有两个相等的实数根,写出一组满足条件的实数a,b的值:a=4,b=2【考点】根的判别式【专题】开放型【分析】由于关于x的一元二次方程ax2+bx+=0有两个相等的实数根,得到a=b2,找一组满足条件的数据即可【解答】关于x的一元二次方程ax2+bx+=0有两个相等的实数根,=b24a=b2a=0,a=b2,当b=2时,a=4,故b=2,a=4时满足条件故答案为:4,2【点评】本题主要考查了一元二次方程根的判别式,熟练掌握判别式的意义是解题的关键23已知关于x的方程x22x+a=0有两个实数根,则实数a的取值范围是a1【考点】根的判别式【专题】计算题【分析】由方程有两个实数根,得到根的判别式大于等于0,即可确定出a的范围【解答】解:方程x22x+a=0有两个实数根,=44a0,解得:a1,故答案为:a1【点评】此题考查了根的判别式,熟练掌握一元二次方程根的判别式与方程根的关系是解本题的关键24若一元二次方程(m1)x24x5=0没有实数根,则m的取值范围是m

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1