ImageVerifierCode 换一换
格式:DOCX , 页数:20 ,大小:143.80KB ,
资源ID:480321      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/480321.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(值域经典题型.docx)为本站会员(b****1)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

值域经典题型.docx

1、值域经典题型值域简单练习题1.求在上的值域 2.求函数的值域 3. 求函数的值域 4.求函数的值域 5.6.7.8.9.10.11.12.13.求函数的值域。值域的求法加强练习题解答题(共10小题)1已知函数的定义域为集合A,函数的值域为集合B,求AB和(CRA)(CRB)2已知函数f(x)=x2bx+3,且f(0)=f(4)(1)求函数y=f(x)的零点,写出满足条件f(x)0的x的集合;(2)求函数y=f(x)在区间(0,3上的值域3求函数的值域:4求下列函数的值域:(1)y=3x2x+2; (2); (3);(4); (5) (6);5求下列函数的值域(1); (2); (3)x0,3且

2、x1;(4)6求函数的值域:y=|x1|+|x+4|7求下列函数的值域(1)y=x2+x+2; (2)y=32x,x2,9;(3)y=x22x3,x(1,2;(4)y=8已知函数f(x)=22x+2x+1+3,求f(x)的值域9已知f(x)的值域为,求y=的值域10设的值域为1,4,求a、b的值参考答案与试题解析一解答题(共10小题)1已知函数的定义域为集合A,函数的值域为集合B,求AB和(CRA)(CRB)考点:函数的值域;交、并、补集的混合运算;函数的定义域及其求法。1457182专题:计算题。分析:由可求A,由可求B可求解答:解:由题意可得A=2,+),B=(1,+),CRA=(,2),

3、CRB=(,1(4分)AB=2,+)(CRA)(CRB)=(,1(6分)点评:本题主要考查了函数的定义域及指数函数的值域的求解,集合的交集、补集的基本运算,属于基础试题2已知函数f(x)=x2bx+3,且f(0)=f(4)(1)求函数y=f(x)的零点,写出满足条件f(x)0的x的集合;(2)求函数y=f(x)在区间(0,3上的值域考点:函数的值域;二次函数的性质;一元二次不等式的解法。1457182专题:计算题。分析:(1)从f(0)=f(4)可得函数图象关于直线x=2对称,用公式可以求出b=4,代入函数表达式,解一元二次不等式即可求出满足条件f(x)0的x的集合;(2)在(1)的基础上,利

4、用函数的单调性可以得出函数在区间(0,3上的最值,从而可得函数在(0,3上的值域解答:解:(1)因为f(0)=f(4),所以图象的对称轴为x=2,b=4,函数表达式为f(x)=x24x+3,解f(x)=0,得x1=1,x2=3,因此函数的零点为:1和3满足条件f(x)0的x的集合为(1,3)(2)f(x)=(x2)21,在区间(0,2)上为增函数,在区间(2,3)上为减函数所以函数在x=2时,有最小值为1,最大值小于f(0)=3因而函数在区间(0,3上的值域的为1,3)点评:本题主要考查二次函数解析式中系数与对称轴的关系、二次函数的单调性与值域问题,属于中档题只要掌握了对称轴公式,利用函数的图

5、象即可得出正确答案3求函数的值域:考点:函数的值域。1457182专题:计算题;转化思想;判别式法。分析:由于对任意一个实数y,它在函数f(x)的值域内的充要条件是关于x的方程(y2)x2+(y+1)x+y2=0有实数解,因此“求f(x)的值域”这一问题可转化为“已知关于x的方程(y2)x2+(y+1)x+y2=0有实数解,求y的取值范围”解答:解:判别式法:x2+x+10恒成立,函数的定义域为R由得:(y2)x2+(y+1)x+y2=0当y2=0即y=2时,即3x+0=0,x=0R当y20即y2时,xR时方程(y2)x2+(y+1)x+y2=0恒有实根,=(y+1)24(y2)20,1y5且

6、y2,原函数的值域为1,5点评:判别式法:把x作为未知量,y看作常量,将原式化成关于x的一元二次方程形式,令这个方程有实数解,然后对二次项系数是否为零加以讨论:(1)当二次项系数为0时,将对应的y值代入方程中进行检验以判断y的这个取值是否符合x有实数解的要求(2)当二次项系数不为0时,利用“xR,0”求解,此时直接用判别式法是否有可能产生增根,关键在于对这个方程去分母这一步是不是同解变形4求下列函数的值域:(1)y=3x2x+2;(2);(3);(4);(5)(6)考点:函数的值域。1457182专题:常规题型。分析:(1)(配方法)y=3x2x+2=3(x)2+(2)看作是复合函数先设=x2

7、6x5(0),则原函数可化为y=,再配方法求得的范围,可得的范围(3)可用分离变量法:将函数变形,y=3+,再利用反比例函数求解(4)用换元法设t=0,则x=1t2,原函数可化为y=1t2+4t,再用配方法求解(5)由1x201x1,可用三角换元法:设x=cos,0,将函数转化为y=cos+sin=sin(+)用三角函数求解(6)由x2+x+10恒成立,即函数的定义域为R,用判别式法,将函数转化为二次方程(y2)x2+(y+1)x+y2=0有根求解解答:解:(1)(配方法)y=3x2x+2=3(x)2+,y=3x2x+2的值域为,+)(2)求复合函数的值域:设=x26x5(0),则原函数可化为

8、y=又=x26x5=(x+3)2+44,04,故0,2,y=的值域为0,2(3)分离变量法:y=3+,0,3+3,函数y=的值域为yR|y3(4)换元法(代数换元法):设t=0,则x=1t2,原函数可化为y=1t2+4t=(t2)2+5(t0),y5,原函数值域为(,5注:总结y=ax+b+型值域,变形:y=ax2+b+或y=ax2+b+(5)三角换元法:1x201x1,设x=cos,0,则y=cos+sin=sin(+)0,+,sin(+),1,sin(+)1,原函数的值域为1,(6)判别式法:x2+x+10恒成立,函数的定义域为R由y=得:(y2)x2+(y+1)x+y2=0当y2=0即y

9、=2时,即3x+0=0,x=0R当y20即y2时,xR时方程(y2)x2+(y+1)x+y2=0恒有实根,=(y+1)24(y2)20,1y5且y2,原函数的值域为1,5点评:本题主要考查求函数值域的一些常用的方法配方法,分离变量法,三角换元法,代数换元法,判别式法5求下列函数的值域(1);(2);(3)x0,3且x1;(4)考点:函数的值域。1457182分析:(1)把函数转化成关于tanx的函数,进而求值域(2)令因为1x20,即1x1,故可x=sinx,把函数转化成三角函数,利用三角函数的性质求函数的最值(3)把原式变成2+,设t=,通过幂函数t的图象即可求出t的值域,进而求出函数y=的

10、值域(4)令t=x4,即x=t+4代入原函数得出y关于t的函数,进而求出答案解答:解:(1)=1+4tanx+4=5+4tan2x2+59函数的值域为9,+)(2)令x=sin,=sincos=sin(),sin()1,的值域为,1(3)y=2+令t=,则其函数图象如下如图可知函数在区间0,1)单调减,在区间(1,3单调增t(,63,+)y(,45,+)即函数y=的值域为(,45,+)(4)设t=x4,x=4+t则=|+2|2|t=x400y=y0,4即函数的值域为0,4点评:本题主要考查求函数的值域问题此类题常用换元、配方、数形结合等方法6求函数的值域:y=|x1|+|x+4|考点:函数的值

11、域。1457182专题:计算题;分类讨论。分析:由函数表达式知,y0,无最大值,去掉绝对值,把函数写成分段函数的形式,在每一段上依据单调性求出函数的值域,取并集得函数的值域解答:解:数形结合法:y=|x1|+|x+4|=y5,函数值域为5,+)点评:本题体现数形结合和分类讨论的数学思想方法7求下列函数的值域(1)y=x2+x+2;(2)y=32x,x2,9;(3)y=x22x3,x(1,2;(4)y=考点:函数的值域。1457182专题:计算题。分析:(1)求二次函数y=x2+x+2的值域可先求最值,由最值结合图象,写出值域(2)求一次函数y=32x在闭区间上的值域,要先求最值,由最值写出值域

12、(3)求二次函数y=x22x3在某一区间上的值域,要结合图象,求出最值,再写出值域(4)求分段函数y的值域,要在每一段上求出值域,再取其并集,得出分段函数的值域解答:解:(1)二次函数y=x2+x+2;其图象开口向下,对称轴x=,当x=时y有最大值;故函数y的值域为:(,);(2)一次函数y=32x,x2,9;单调递减,在x=2时,y有最大值7;在x=9时,y有最小值15;故函数y的值域为:15,7;(3)二次函数y=x22x3,x(1,2;图象开口向上,对称轴x=1,当x=1时,函数y有最小值4;当x=1时,y有最大值0;所以函数y的值域为:4,0);(4)分段函数y=;当x6时,y=x104;当2x6时,y=82x,4y12;所以函数y的值域为:4,+)(4,12=4,+)点评:本组4个题目求函数的值域,都是在其定义域上先求其最值,根据最值,直接写出其值域;它们都是基础题8已知函数f(x)=22x+2x+1+3,求f(x)的值域考点:函数

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1