ImageVerifierCode 换一换
格式:DOCX , 页数:30 ,大小:138.09KB ,
资源ID:4648186      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/4648186.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(计算机组成原理第三版课后答案解析.docx)为本站会员(b****5)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

计算机组成原理第三版课后答案解析.docx

1、计算机组成原理第三版课后答案解析1 1计算机是一种能自动地、高速地对各种数字化信息进行运算处理的电子设备。1 2冯诺依曼计算机体系结构的基本思想是存储程序,也就是将用指令序列描述的解题程 序与原始数据一起存储到计算机中。计算机只要一启动,就能自动地取出一条条指令并执行之,直至程序执行完毕,得到计算结果为止。按此思想设计的计算机硬件系统包含:运算器、控制器、存储器、输入设备和输出设备。各部分的作用见教材:P10P121 3计算机的发展经历了四代。第一代:见教材P1 第二代:见教材P2 第三代:见教材P2 第四代:见教材P21 4系统软件定义见教材:P1213,应用软件定义见教材:P121 5见教

2、材:P14151 6见教材:P111 7见教材:P681 8硬件定义见教材:P9 软件定义见教材:P12固件定义见教材:P131 91) 听觉、文字、图像、音频、视频2) 图像、声音、压缩、解压、DSP1 10处理程度按从易到难是:文本图形图像音频视频2.1各数的原码、反码、补码和移码见下表:十进制数真值二进制数真值原码表示反码表示补码表示移码表示1)-35/64-0.10001101.10001101.01110011.01110100.01110102)23/1280.00101110.00101110.00101110.00101111.00101113)-127-01111111111

3、111111000000010000001000000014)小数表示1-1.0000000 1.00000000.0000000整数表示1-00000001100000011111111011111111011111112227/64=00011011/01000000=0.0110110=0.110112-1 规格化浮点表示为:27/64原101,01101100027/64反110,01101100027/64补111,011011000同理:-27/64=- 0.110112-1 规格化浮点表示为:27/64原101,11101100027/64反110,10010011127/64补

4、111,10010100023 模为:29=100000000024 不对,8421码是十进制的编码25浮点数的正负看尾数的符号位是1还是0浮点数能表示的数值范围取决于阶码的大小。浮点数数值的精确度取决于尾数的长度。261)不一定有N1N2 2)正确27 最大的正数:0111 01111111 十进制数:(127)27最小的正数:1001 00000001 十进制数:2727最大的负数:1001 11111111 十进制数:-2727最小的负数:0111 10000001 十进制数:-(127)27281)x补=00.1101 y补=11.0010 x+y补x补+y补=11.1111 无溢出

5、x+y= 0.0001 x补=00.1101 -y补=00.1110 xy补x补+-y补=01.1011 正向溢出 2)x补=11.0101 y补=00.1111 x+y补x补+y补=00.0100 无溢出 x+y= 0.0100 x补=11.0101 -y补=11.0001 xy补x补+-y补=10.0110 负向溢出 3) x补=11.0001 y补=11.0100 x+y补 x补+y补=10.0101 负向溢出 x补=11.0001 -y补=00.1100 xy补x补+-y补=11.1101 无溢出 Xy=0.0011291)原码一位乘法 |x|=00.1111 |y|=0.1110 部

6、分积 乘数 yn 00.0000 0.1110+00.0000 00.0000 00.00000 0.111+00.1111 00.11110 00.011110 0.11+00.1111 01.011010 00.1011010 0.1+00.1111 01.1010010 00.11010010Pf=xfyf=1 |p|=|x|y|=0.11010010所以xy原=1.11010010补码一位乘法 x补=11.0001 y补=0.1110 -x补=11.0001部分积 yn yn+100.0000 0.1110000.00000 0.1110+00.1111 00.11110 00.011

7、110 0.11100.0011110 0.1100.00011110 0.1 +11.0001 11.00101110xy补=11.001011102)原码一位乘法 |x|=00.110 |y|=0.010 部分积 乘数 yn 00.000 0.010+00.000 00.000 00.0000 0.01+00.110 00.1100 00.01100 0.0+00.000 00.01100 000.001100Pf=xfyf=0 |p|=|x|y|=0.001100所以xy原=0.001100补码一位乘法 x补=11.010 y补=1.110 -x补=00.110部分积 yn yn+100

8、.000 1.110000.0000 1.110+00.110 00.1100 00.01100 1.1100.001100 1.1所以xy补=0.0011002101)原码两位乘法 |x|=000.1011 |y|=00.0001 2|x|=001.0110 部分积 乘数 c 000.0000 00.00010+000.1011 000.1011 000.001011 0.000 000.00001011 00.0Pf=xfyf=1 |p|=|x|y|=0.00001011所以xy原=1.00001011 补码两位乘法 x补=000.1011 y补=11.1111 -x补=111.0101

9、部分积 乘数 yn+1 000.0000 11.11110+111.0101 111.0101 111.110101 11.111 111.11110101 11.1 所以xy补=111.11110101 xy=-0.000010112)原码两位乘法 |x|=000.101 |y|=0.111 2|x|=001.010 -|x| 补=111.011 部分积 乘数 c 000.000 0.1110+111.011 111.011 111.11011 0.11+001.010 001.00011 000.100011 Pf=xyf=0 |p|=|x|y|=0.100011所以xy原=0.10001

10、1 补码两位乘法 x补=111.011 y补=1.001 -x补=000.101 2-x补=001.010 部分积 乘数 yn+1 000.000 1.0010+111.011 111.011 111.111011 1.00+001.010 001.00011 000.100011 所以xy补=0.100011 2.111) 原码不恢复余数法 |x|=00.1010 |y|=00.1101 -|y| 补=11.0011 部分积 商数 00.1010 +11.0011 1101101 0 11.1010 +00.1101 00.0111 0.1 00.1110 +11.0011 00.0001

11、0.11 00.0010+11.0011 11.0101 0.110 01.1010 +00.1101 11.0111 0.1100+00.1101 00.0100所以x/y原=0.1100 余数r原=0.010024补码不恢复余数法 x补=00.1010 y补=00.1101 -y补=11.0011 部分积 商数 00.1010 +11.0011 11.1101 0 11.1010 +00.1101 00.0111 0.1 00.1110 +11.0011 00.0001 0.11 00.0010+11.0011 11.0101 0.110 10.1010 +00.1101 11.0111

12、0.1100+00.1101 00.0100所以x/y补=0.1100 余数r补=0.0100242)原码不恢复余数法 |x|=00.101 |y|=00.110 -|y| 补=11.010 部分积 商数 00.101 +11.010 11.111 0 11.110 +00.110 00.100 0.1 01.000 +11.010 00.010 0.11 00.100+11.010 11.110 0.110+00.110 00. 100所以x/y原=1.110 余数r原=1.10023补码不恢复余数法 x补=11.011 y补=00.110 -y补=11.010 部分积 商数 11.011

13、+00.110 00.001 1 00.010 +11.010 11.100 1.0 11.000 +00.110 11.110 1.00 11.100+00.110 00.010 1.001 +11.010 11.100所以x/y补=1.001+23=1.010 余数r补=1.100232121) x补=2110100.100100 y补=2111011.100110小阶向大阶看齐: x补=2111000.010010 求和:x+y补=21110(00.01001011.100110)2111011.111000x-y补=21110(00.01001000.011010)2111000.10

14、1100规格化:x+y补=2101111.000000 浮点表示:1011,11.000000规格化:x-y补=2111000.101100 浮点表示:1110,0.1011002)x补=2010111.011110 y补=2010000.010110小阶向大阶看齐:y补=2010100.001011 求和:x+y补=20101(11.01111000.001011)2010111.101001x-y补=20101(11.01111011.110101)2010100.010011规格化:x+y补=2101011.010010 浮点表示:1010,11. 010010规格化:x-y补=2101

15、000.100110 浮点表示:1010,00.100110213见教材:P702141)1.0001011262)0.110111*2-62 151) 串行进位方式C1=G1+P1C0 G1=A1B1, P1=A1B1C2=G2+P2C1 G2=A2B2, P2=A2B2C3=G3+P3C2 G3=A3B3, P3=A3B3C4=G4+P4C3 G4=A4B4, P4=A4B42) 并行进位方式 C1=G1+P1C0 C2=G2+P2G1+P2P1C0 C3=G3+P3G2+P3P2G1+P3P2P1C0 C4= G4+P4G3+P4P3G2+P4P3P2G1+P4P3P2P1C02 16参

16、考教材P62 32位两重进位方式的ALU和32位三重进位方式的ALU217 F3 F2 F1 F074LS181 4位ALU Cn+4 Cn MS3S0 A3 B3 A2 B2 A1 B1 A0 B0- “1” F3 F2 F1 F0 74LS181 4位ALU Cn Cn+4 “1” A3 B3 A2 B2 A1 B1 A0 B0-3.1见教材:P7932 见教材:P8333与SRAM相比,DRAM在电路组成上有以下不同之处:1) 地址线的引脚一般只有一半,因此,增加了两根控制线RAS、CAS,分别控制接受行地址和列地址。2) 没有CS引脚,在存储器扩展时用RAS来代替由于引脚的限制,要分开

17、接收行地址和列地址。34见教材:P8835 1) (22016)/(21716)=23=8 2) (128k16)/(16k8)=8216 3)168=128 ,CPU通过译码与片选方式选择模块板。 D0D15 CS同左3:8译码器A14 A15 A16 A0A13 A17 A18 A19 CPU 16k82 CS Y0 Y1 Y6 Y7 3:8译码器 3.6 (1)芯片1K4位,片内地址线10位(A9-A0 ),数据线4位。芯片总数为:(16K16)/(1K4)=16464片 (2)存储器容量为16K,故地址线总数为14位(A13A0),其中A13A12A11A10通过 4:16译码器产生片

18、选信号CS0CS15 。 (3)刷新信号周期为:2ms/64=31.3us。 (4)若用集中式刷新,则刷新一遍用64个读/写周期。 死时间率为:640.1/21000=0.32%。ROM:16K空:8KRAM:40K(1) 0000H 3FFFH4000H5FFFH6000HFFFFH(2)CPU与芯片连接如图所示:381)可采用多体交叉存储器或高速缓冲存储器来实现。2)可参考P109图320391) 虚拟地址格式: 29 12 11 0页面号(18位)页内地址(12位)虚拟地址30位2) 物理地址格式:21 12 11 0页号(10位)页内地址(12位)物理地址22位3)页表的长度为:1GB

19、/4KB=256K3101) 程序运行的时间不相等,第一种情况的运行时间要大于第二种情况的运行时间。2) 假设运行一条指令的时间为4T在四体交叉存储器中第一次取6条指令的时间=4T+5T=9T,以后均为8T。重复执行80次的时间=798+9T=641T在四体交叉存储器中第一次取8条指令的时间=4T+7T=11T,以后均为8T。重复执行60次的时间=598+11T=483T311M(x)=x1+x0=0011M(x)x3=x4+x3=0011000G(x)= x3+x +1=1011M(x)x3/ G(x)=0011000/1011=0011+101/1011M(x)x3+ R(x)=00110

20、00+101=0011101海明码是:01000114.11. 见书P1332. 见书P1343. 见书P1364. 见书P1365. 见书P1376. 见书P1497. 见书P1418. 见书P1429. 见书P14710. 见书P1544.2 1. 寄存器直接2. 寄存器间接3. 立即数4. 直接5. 相对、基址、变址4.3 寻址方式分为:指令寻址方式和操作数寻址方式操作数寻址方式可分为:(1) 隐含寻址(2) 立即寻址 Data=D(3) 寄存器寻址 Data=(R)(4) 寄存器直接寻址 EA=R(5) 存储器直接寻址 EA=A(6) 寄存器间接寻址 EA=(R)(7) 存储器间接寻址

21、 EA=(D)(8) 相对寻址 EA=(PC)+D(9) 基址寻址 EA=(R)基址+D(10) 变址寻址 EA=(R)变址+D(11) 复合寻址方式 相对间接寻址 EA=(RC)+D) 间接相对寻址 EA=(PC)+(D) 变址间接寻址 EA=(R)+D) 间接变址寻址 EA=(R)+(D) 基址+变址寻址 EA=(R)基址+(R)变址+D4.4 参见书P154。4.5 不合理。因为浪费了存储空间。4.6 256-K-L 条4.7 双操作数最多可拥有的指令数为255条,单操作数最多可拥有的指令数为63条,无操作数最多可拥有的指令数为64条。4.8 变址寻址方式的访存有效地址是:02B0H+0

22、01FH=02CFH 变址寻址方式的访存有效地址是:3A00H+001FH=3A1FH4.9 参见书P156。4.10 指令格式及寻址方式的特点为:(1) 操作码字段为4位,可指定16种操作,即16条指令;(2) 单字长(16位)两地址指令;(3) 操作数存放于两个寄存器中,是RR型指令,这种指令结构执行速度快;(4) 每个操作数可以指定8种寻址方式;(5) 该指令格式的寻址方式可以是寄存器直接寻址和寄存器间接寻址。4.11 参见书P157。4.12 某计算机字长为16位,主存容量为640K字,采用单字长单地址指令,共有80条指令。试用直接、间接、变址、相对四种寻址方式设计指令格式。解:80条

23、指令需占用操作码字段(OP)7位,寻址模式(X)2位,形式地址(D)7位。其指令格式如下:15 9 8 7 6 0OPXD 寻址模式模式定义如下: X=00 直接寻址 有效地址为:EA=D(27) X=01 间接寻址 有效地址为:EA=(D)(64K) X=10 变址寻址 有效地址为:EA=(R)+ D(27) X=11 相对寻址 有效地址为:EA=(PC)+D(27) 其中R为变址寄存器(16位),PC为程序计数器(16位),在变址和相对寻址时,可采用交错相加的方式来产生有效地址。其最大的寻址空间可达216+7=223220640K,故满足题目要求。4.13 操作码的第0位和第1位组成4种不

24、同的编码,分别代表不同字长的指令: 00代表字长为1字节的指令; 01代表字长为2字节的指令; 10代表字长为3字节的指令; 11代表字长为4字节的指令。 每取出一个字(32位)时,根据该字的第0位和第1位可判断出这个字中的第一条指令包含多少字节,假如它包含n个字节。然后看第n+1个字节的前两位,得出这个字中第二条指令包含多少字节,以此类推,可知这个字中包含的指令条数。4.14 RS型指令中,64种操作需占用操作码字段(OP)6位,16个通用寄存器 需占用4位,剩余地址码部分22位,故RS型指令的最大存储空间是32+22=54 位。4.15 清除R2可采用下面任意一条指令: 指令 功能说明 (

25、1)ADD R0,R0,R2 R2 (R0)+(R0)(2)SUB R2,R2,R2 R2 (R2)-(R2)(3)ADD R0,imm(0),R2 imm(0)为立即数0, R2 (R0)+04.161. 对。2. 错。选用使用频度高的一些简单指令以及很有用但不复杂的指令。3. 错。只是相对CISC机要简单一些。4. 错。有乘、除指令和浮点运算指令。4.17 参见书P159。5.11. 见书P1662. 见书P1693. 见书P1694. 见书P1695. 见书P1696. 见书P1717. 见书P1718. 见书P1719. 见书P19110. 见书P1915.21. 控制器2. 栈顶指示

26、器3. 指令寄存器4. 指令计数器5. 水平、垂直6. 水平、垂直7. 控制存储器 EPROM8. 同步控制9. 组合逻辑控制器10. 200ns 延长机器周期或局部控制5.31. 通用寄存器2. AX或AL3. 状态寄存器中的ZF4. 状态寄存器中的OF5. CX6. IP7. SP8. IR9. 指令译码器10. AC5.4 参见书P1651685.5 参见书P1895.6 数据通路如下图所示。其中,PC为程序计数器,本身具有加1的功能。各部件可通过单总线相互连接起来,数据传送方向由箭头表示。5.7 指令周期流程图如下所示:5.8 节拍脉冲T1,T2,T3的宽度实际上等于时钟脉冲的周期或是

27、它的倍数。由此,T1=T3=20ns,T2=40ns,所以主脉冲源的频率应为f=1/T1=50MHZ.根据时序信号关系,T1,T2,T3三个节拍脉冲的逻辑表达式如下:T1=C1C2 T2=C2 T3=C1T1用与门实现,T2和T3则用C2的Q端和C1的Q端加非门实现,其目的在于保持信号输出延迟时间的一致性并与环形脉冲发生器隔离。时序产生器逻辑图如下图所示:5.9 采用循环移位寄存器形式。当总清信号CLR使触发器C4置“1”时,门3打开。第一个正脉冲通过3使触发器 C1-C3清“0”。由于时钟源输出10MHz(脉冲宽度100ns),经过半个主脉冲周期(50ns)的延迟,触发器C4由“1”状态翻到

28、“0”状态,再经过半个主脉冲周期的延迟,第二正脉冲的上升沿作移位信号,使触发器C1-C3变为“100”状态,此后第二个,第三个连续通过门2成移位信号,相继变为“110”,“111”状态。当C3变为“1”状态时(对应第4个正脉冲),其状态反映到C4的D端,因而在第4个正脉冲下沿将C4置“1”,门3复又打开,第5个正脉冲通过门3又形成清“0”脉冲,将C1C3清零,于是下一个循环再度开始。T1T4是四个输出节拍脉冲。根据已知条件,其译码逻辑表达式为:T1=C1C2 T2=C2C3 T3=C3 T4=C1这四个脉冲是等间隔宽度的脉冲,每个脉冲宽度为16.7ns。时序产生器逻辑图如下图所示:5.10 (1)主频为66MHz,所以,主频周期=1/66MHz=0.015us, 故一条指令执行

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1