ImageVerifierCode 换一换
格式:DOCX , 页数:20 ,大小:368.07KB ,
资源ID:4593205      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/4593205.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(整理第十一章化学动力学基础二.docx)为本站会员(b****3)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

整理第十一章化学动力学基础二.docx

1、整理第十一章化学动力学基础二第十一章 化学动力学基础(二)11.1 碰撞理论11.1.1 速率理论的共同点与热力学的经典理论相比,动力学理论发展较迟。先后形成的碰撞理论、过渡态理论都是20世纪后建立起来的,尚有明显不足之处。理论的共同点是:首先选定一个微观模型,用气体分子运动论(碰撞理论)或量子力学(过渡态理论)的方法,并经过统计平均,导出宏观动力学中速率系数的计算公式。由于所采用模型的局限性,使计算值与实验值不能完全吻合,还必须引入一些校正因子,使理论的应用受到一定的限制。11.1.2 两个分子的一次碰撞过程两个分子在相互的作用力下,先是互相接近,接近到一定距离,分子间的斥力随着距离的减小而

2、很快增大,分子就改变原来的方向而相互远离,完成了一次碰撞过程。粒子在质心体系中的碰撞轨线可用示意图表示为:有效碰撞直径和碰撞截面运动着的A分子和B分子,两者质心的投影落在直径为dAB的圆截面之内,都有可能发生碰撞。dAB称为有效碰撞直径,数值上等于A分子和B分子的半径之和。虚线圆的面积称为碰撞截面(collision cross section)。数值上等于 。A与B分子互碰频率将A和B分子看作硬球,根据气体分子运动论,它们以一定角度相碰。相对速度为: 互碰频率为: 两个A分子的互碰频率当体系中只有一种A分子,两个A分子互碰的相对速度为:每次碰撞需要两个A分子,为防止重复计算,在碰撞频率中除以

3、2,所以两个A分子互碰频率为:硬球碰撞模型设A和B为没有结构的硬球分子,质量分别为 和 ,折合质量为 ,运动速度分别为 和 ,总的动能为将总的动能表示为质心整体运动的动能 和分子相对运动的动能 ,两个分子在空间整体运动的动能 对化学反应没有贡献,而相对动能可以衡量两个分子相互趋近时能量的大小,有可能发生化学反应。碰撞参数(impact parameter)碰撞参数用来描述粒子碰撞激烈的程度,通常用字母b表示。在硬球碰撞示意图上,A和B两个球的连心线 等于两个球的半径之和,它与相对速度 之间的夹角为 。通过A球质心,画平行于 的平行线,两平行线间的距离就是碰撞参数b 。数值上:有效碰撞分数分子互

4、碰并不是每次都发生反应,只有相对平动能在连心线上的分量大于阈能的碰撞才是有效的,所以绝大部分的碰撞是无效的。要在碰撞频率项上乘以有效碰撞分数q。反应截面(cross section of reaction)反应截面 的定义式为:式中br是碰撞参数临界值,只有碰撞参数小于br的碰撞才是有效的。为反应阈能,从图上可以看出,反应截面是相对平动能的函数,相对平动能至少大于阈能,才有反应的可能性,相对平动能越大,反应截面也越大。反应阈能(threshold energy of reaction)反应阈能又称为反应临界能。两个分子相撞,相对动能在连心线上的分量必须大于一个临界值 Ec,这种碰撞才有可能引发

5、化学反应,这临界值Ec称为反应阈能。Ec值与温度无关,实验尚无法测定,而是从实验活化能Ea计算。碰撞理论计算速率系数的公式11.1.3碰撞理论计算速率系数的公式(1)(2)式完全等效,(1)式以分子计,(2)式以1mol计算。11.1.4 反应阈能与实验活化能的关系碰撞理论计算速率系数的公式:将与T无关的物理量总称为B:实验活化能的定义:比较得总结:阈能Ec与温度无关,但无法测定,要从实验活化能Ea计算。在温度不太高时,Ea Ec11.1.5 概率因子(probability factor)由于简单碰撞理论所采用的模型过于简单,没有考虑分子的结构与性质,所以用概率因子来校正理论计算值与实验值的

6、偏差。P=k(实验)/k(理论)概率因子又称为空间因子或方位因子。理论计算值与实验值发生偏差的原因主要有:(1)从理论计算认为分子已被活化,但由于有的分子只有在某一方向相撞才有效;(2)有的分子从相撞到反应中间有一个能量传递过程,若这时又与另外的分子相撞而失去能量,则反应仍不会发生;(3)有的分子在能引发反应的化学键附近有较大的原子团,由于位阻效应,减少了这个键与其它分子相撞的机会等等。碰撞理论的优缺点优点: 碰撞理论为我们描述了一幅虽然粗糙但十分明确的反应图像,在反应速率理论的发展中起了很大作用。对阿仑尼乌斯公式中的指数项、指前因子和阈能都提出了较明确的物理意义,认为指数项相当于有效碰撞分数

7、,指前因子A相当于碰撞频率。它解释了一部分实验事实,理论所计算的速率系数k值与较简单的反应的实验值相符。缺点:但模型过于简单,所以要引入概率因子,且概率因子的值很难具体计算。阈能还必须从实验活化能求得,所以碰撞理论还是半经验的。11.2 过渡态理论11.2.1 过渡态理论(transition state theory)过渡态理论是1935年由艾林(Eyring)和波兰尼(Polany)等人在统计热力学和量子力学的基础上提出来的。他们认为由反应物分子变成生成物分子,中间一定要经过一个过渡态,而形成这个过渡态必须吸取一定的活化能,这个过渡态就称为活化络合物,所以又称为活化络合物理论。用该理论,只

8、要知道分子的振动频率、质量、核间距等基本物性,就能计算反应的速率系数,所以又称为绝对反应速率理论(absolute rate theory)。11.2.2 双原子分子的莫尔斯势能曲线该理论认为反应物分子间相互作用的势能是分子间相对位置的函数。莫尔斯(Morse)公式是对双原子分子最常用的计算势能Ep的经验公式:式中r0是分子中双原子分子间的平衡核间距,De是势能曲线的井深,a为与分子结构有关的常数.AB双原子分子根据该公式画出的势能曲线如图所示。当rr0时,有引力,即化学键力。当rr0时,有斥力。时的能级为振动基态能级,E0为零点能。D0为把基态分子离解为孤立原子所需的能量,它的值可从光谱数据

9、得到。11.2.3 三原子分子的核间距以三原子反应为例:当A原子与双原子分子BC反应时首先形成三原子分子的活化络合物,该络合物的势能是3个内坐标的函数:这要用四维图表示,现在令ABC=180,即A与BC发生共线碰撞,活化络合物为线型分子,则EP=EP(rAB,rBC),就可用三维图表示。11.2.4 势能面对于反应: 令ABC=180o, EP=EP(rAB,rBC)。随着核间距rAB和rBC的变化,势能也随之改变。这些不同点在空间构成高低不平的曲面,称为势能面,如图所示。图中R点是反应物BC分子的基态,随着A原子的靠近,势能沿着RT线升高,到达T点形成活化络合物。随着C原子的离去,势能沿着T

10、P线下降,到P点是生成物AB分子的稳态。D点是完全离解为A,B,C原子时的势能;OEP一侧,是原子间的相斥能,也很高。势能面的类型目前常见的势能面有两种:一种是Eyring和Polanyi利用London对三原子体系的量子力学势能近似式画出的势能面称为London-Eyring-Polanyi势能面,简称LEP势能面。另一种是Sato又在这个基础上进行了修正,使势垒顶端不合理的势阱消失,这样得到的势能面称为 London-Eyring-Polanyi-Sato势能面,简称LEPS势能面。反应坐标(reaction coordinate)反应坐标是一个连续变化的参数,其每一个值都对应于沿反应体系

11、中各原子的相对位置。如在势能面上,反应沿着RTTP的虚线进行,反应进程不同,各原子间相对位置也不同,体系的能量也不同。如以势能为纵坐标,反应坐标为横坐标,画出的图可以表示反应过程中体系势能的变化,这是一条能量最低的途径。马鞍点(saddle point)在势能面上,活化络合物所处的位置T点称为马鞍点。该点的势能与反应物和生成物所处的稳定态能量R点和P点相比是最高点,但与坐标原点一侧和D点的势能相比又是最低点。如把势能面比作马鞍的话,则马鞍点处在马鞍的中心。从反应物到生成物必须越过一个能垒。势能面投影图将三维势能面投影到平面上,就得到势能面的投影图。图中曲线是相同势能的投影,称为等势能线,线上数

12、字表示等势能线的相对值。等势能线的密集度表示势能变化的陡度。靠坐标原点(O点)一方,随着原子核间距变小,势能急剧升高,是一个陡峭的势能峰。 在D点方向,随着rAB和rBC的增大,势能逐渐升高,这平缓上升的能量高原的顶端是三个孤立原子的势能,即D点。反应物R经过马鞍点T到生成物P,走的是一条能量最低通道。势能面剖面图沿势能面上R-T-P虚线切剖面图,把R-T-P曲线作横坐标,这就是反应坐标。以势能作纵坐标,标出反应进程中每一点的势能,就得到势能面的剖面图。从剖面图可以看出:从反应物A+BC到生成物走的是能量最低通道,但必须越过势能垒Eb。Eb是活化络合物与反应物最低势能之差,E0是两者零点能之间

13、的差值。这个势能垒的存在说明了实验活化能的实质。三原子体系振动方式线性三原子体系有三个平动和两个转动自由度,所以有四个振动自由度:(a)为对称伸缩振动,rAB与rBC相等;(b)为不对称伸缩振动,rAB与rBC不等;(c)和(d)为弯曲振动,分别发生在相互垂直的两个平面内,但能量相同。对于稳定分子,这四种振动方式都不会使分子破坏。但对于过渡态分子,不对称伸缩振动没有回收力,会导致它越过势垒分解为产物分子。所以这种不对称伸缩振动每振一次,就使过渡态分子分解,这个振动频率就是过渡态的分解速率系数。统计热力学方法计算速率系数过渡态理论假设:1.反应物与活化络合物能按达成热力学平衡的方式处理;2.活化

14、络合物向产物的转化是反应的决速步。以三原子反应为例,设n是导致络合物分解的不对称伸缩振动的频率,其数值很小(可假定hn0,离子强度增大,k增大,正原盐效应。(2) 1,是由于初级过程活化了一个分子,而次级过程中又使若干反应物发生反应。如:H2+Cl22HCl的反应,1个光子引发了一个链反应,量子效率可达106。当0的反应。2.反应温度系数很小,有时升高温度,反应速 率反而下降。3.光化反应的平衡常数与光强度有关。光敏剂(sensitizer)有些物质对光不敏感,不能直接吸收某种波长的光而进行光化学反应。如果在反应体系中加入另外一种物质,它能吸收这样的辐射,然后将光能传递给反应物,使反应物发生作

15、用,而该物质本身在反应前后并未发生变化,这种物质就称为光敏剂,又称感光剂。 例如:H2+hn 2H Hg为光敏剂 CO2+H2O O2 + (C6H12O6)n 叶绿素为光敏剂。化学发光(chemiluminescence)化学发光可以看作是光化反应的反面过程。在化学反应过程中,产生了激发态的分子,当这些分子回到基态时放出的辐射,称为化学发光。这种辐射的温度较低,故又称化学冷光。不同反应放出的辐射的波长不同。有的在可见光区,也有的在红外光区,后者称为红外化学发光,研究这种辐射,可以了解初生态产物中的能量分配情况。11.8 酶催化反应酶催化反应历程Michaelis-Menten,Briggs,

16、Haldane,Henry等人研究了酶催化反应动力学,提出的反应历程如下:他们认为酶(E)与底物(S)先形成中间化合物ES,中间化合物再进一步分解为产物(P),并释放出酶(E),整个反应的速控步是第二步。用稳态近似法处理酶催化反应的级数令酶的原始浓度为E0,反应达稳态后,一部分变为中间化合物ES,余下的浓度为E以r为纵坐标,以S为横坐标作图,从图上可以看出酶催化反应一般为零级,有时为一级。酶催化的反应速率曲线(2)综合规划环境影响篇章或者说明的内容。1.当底物浓度很大时,SKM,r =k2E0,反应只与酶的浓度有关,而与底物浓度无关,对S呈零级。2.当SKM时,r =k2E0S/KM 对S呈一

17、级。3.当S时,r = rm=k2E0。专项规划 工业、农业、畜牧业、林业、能源、水利、交通、城市建设、旅游、自然资源开发有关的专项规划。 环境影响报告书米氏常数KM疾病成本法和人力资本法是用于估算环境变化造成的健康损失成本的主要方法,或者说是通过评价反映在人体健康上的环境价值的方法。为了纪念Michaelis-Menten对酶催化反应的贡献,将KM=(k-1+k2)/k1称为米氏常数,将KM=ES/ES称为米氏公式。A.国家根据建设项目影响环境的范围,对建设项目的环境影响评价实行分类管理当反应速率达到最大值rm的一半时, KM=S。(四)建设项目环境影响评价资质管理下面的数学处理可以求出KM

18、和rm2)间接使用价值。间接使用价值(IUV)包括从环境所提供的用来支持目前的生产和消费活动的各种功能中间接获得的效益。(2)综合规划环境影响篇章或者说明的内容。重排得:大纲要求1)直接使用价值。直接使用价值(DUV)是由环境资源对目前的生产或消费的直接贡献来决定的。以 作图,从斜率和截距求出KM和rm酶催化反应特点酶催化反应与生命现象有密切关系,它的主要特点有:1.高选择性:它的选择性超过了任何人造催化剂,例如脲酶它只 能将尿素迅速转化成氨和二氧化碳,而对其他反应 没有任何活性。第五章环境影响评价与安全预评价2.高效率:它比人造催化剂的效率高出109至1015 倍。例如一个过氧化氢分解酶分子,在1秒钟内可以分解十万个过氧化氢分子。3.反应条件温和: 一般在常温、常压下进行。4.反应历程复杂:受pH、温度、离子强度影响较大。

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1