ImageVerifierCode 换一换
格式:DOCX , 页数:10 ,大小:24.38KB ,
资源ID:446601      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/446601.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(考研数学大纲数一共12页文档.docx)为本站会员(b****1)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

考研数学大纲数一共12页文档.docx

1、考研数学大纲数一共12页文档2019最新考研数学一大纲“教书先生”恐怕是市井百姓最为熟悉的一种称呼,从最初的门馆、私塾到晚清的学堂,“教书先生”那一行当怎么说也算是让国人景仰甚或敬畏的一种社会职业。只是更早的“先生”概念并非源于教书,最初出现的“先生”一词也并非有传授知识那般的含义。孟子中的“先生何为出此言也?”;论语中的“有酒食,先生馔”;国策中的“先生坐,何至于此?”等等,均指“先生”为父兄或有学问、有德行的长辈。其实国策中本身就有“先生长者,有德之称”的说法。可见“先生”之原意非真正的“教师”之意,倒是与当今“先生”的称呼更接近。看来,“先生”之本源含义在于礼貌和尊称,并非具学问者的专称

2、。称“老师”为“先生”的记载,首见于礼记?曲礼,有“从于先生,不越礼而与人言”,其中之“先生”意为“年长、资深之传授知识者”,与教师、老师之意基本一致。所谓“了解”和“理解”是指对于“基本概念”的理解程度,“会求”和“掌握”则是指对于“基本解题方法”的把握程度。当然“了解”低于“理解”,“会求”低于“掌握”。因此“了解”和“会求”一般限于出选择和填空题,“理解”和“掌握”则有可能出计算题和证明题。家庭是幼儿语言活动的重要环境,为了与家长配合做好幼儿阅读训练工作,孩子一入园就召开家长会,给家长提出早期抓好幼儿阅读的要求。我把幼儿在园里的阅读活动及阅读情况及时传递给家长,要求孩子回家向家长朗诵儿歌

3、,表演故事。我和家长共同配合,一道训练,幼儿的阅读能力提高很快。 数学一 考试科目:高等数学、线性代数、概率论与数理统计 试卷结构:(一)题分及考试时间:试卷满分为150分,考试时间为180分钟。(二)内容比例: 高等教学-约60 线性代数-约20% 概率论与数理统计-20(三)题型比例: 填空题与选择题-约40 解答题(包括证明题)-约60%单靠“死”记还不行,还得“活”用,姑且称之为“先死后活”吧。让学生把一周看到或听到的新鲜事记下来,摒弃那些假话套话空话,写出自己的真情实感,篇幅可长可短,并要求运用积累的成语、名言警句等,定期检查点评,选择优秀篇目在班里朗读或展出。这样,即巩固了所学的材

4、料,又锻炼了学生的写作能力,同时还培养了学生的观察能力、思维能力等等,达到“一石多鸟”的效果。 高等数学 一、函数、极限、连续考试内容:函数的概念及表示法函数的有界性、单调性、周期性和奇偶性复合函数、反函数、分段函数和隐函数基本初等函数的性质及其图形初等函数函数关系的建立. -(调整知识点:将简单应用问题函数关系的建立调整为函数关系的建立)-数列极限与函数极限的定义及其性质函数的左极限与右极限无穷小和无穷大的概念及其关系无穷小的性质及无穷小的比较极限的四则运算极限存在的两个准则:单调有界准则和夹逼准则两个重要极限 :函数连续的概念函数间断点的类型初等函数的连续性闭区间上连续函数的性质 考试要求

5、 1理解函数的概念,掌握函数的表示法,并会建立简单应用问题中的函数关系式。 2了解函数的有界性、单调性、周期性和奇偶性 3理解复合函数及分段函数的概念,了解反函数及隐函数的概念 4. 掌握基本初等函数的性质及其图形,了解初等函数的概念. 5. 理解极限的概念,理解函数左极限与右极限的概念,以及函数极限存在与左、右极限之间的关系 6掌握极限的性质及四则运算法则 7掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法 8理解无穷小、无穷大的概念,掌握无穷小的比较方法,会用等价无穷小求极限 9理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型 10了解连续函数的

6、性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质 二、一元函数微分学考试内容: 导数和微分的概念导数的几何意义和物理意义函数的可导性与连续性之间的关系平面曲线的切线和法线导数和微分的四则运算 基本初等函数的导数-(调整知识点:将基本初等函数的导数 导数和微分的四则运算调整为导数和 微分的四则运算 基本初等函数的导数)-复合函数、反函数、隐函数以及参数方程所确定的函数的微分法高阶导数 一阶微分形式的不变性微分中值定理洛必达(LHospital)法则函数单调性的判别 函数的极值函数图形的凹凸性、拐点及渐近线函数图形的描绘函数最大值和最小值

7、弧微分曲率的概念曲率半径考试要求 1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系 2掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分 3了解高阶导数的概念,会求简单函数的n阶导数 4.会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数-(考试要求中将2019年的4会求分段函数的一阶、二阶导数以及5会求隐函数和由参数方程所确定的函数以及反函数的导数调整并合并为4会

8、求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数。)- 5理解并会用罗尔定理、拉格朗日中值定理和泰勒定理,了解并会用柯西中值定理 6掌握用洛必达法则求未定式极限的方法 -(将原来的第9条提前至第6条,足见洛必达法则求未定式极限的重要性。)- 7 理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其简单应用 8会用导数判断函数图形的凹凸性,会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形 9了解曲率和曲率半径的概念,会计算曲率和曲率半径 三、一元函数积分学考试内容:原函数和不定积分的概念不定积分的基本性质基本积分公式定

9、积分的概念和基本性质定积分中值定理用定积分表达和计算质心 -(新增知识点:增加了用定积分表达和计算质心)-积分上限的函数及其导数牛顿一莱布尼茨(Newton-Leibniz)公式不定积分和定积分的换元积分法与分部积分法有理函数、三角函数的有理式和简单无理函数的积分广义积分概定积分的应用考试要求 1理解原函数概念,理解不定积分和定积分的概念 2掌握不定积分的基本公式,掌握不定积分和定积分的性质及定积分中值定理,掌握换元积分法与分部积分法 3会求有理函数、三角函数有理式及简单无理函数的积分 4理解积分上限的函数,会求它的导数,掌握牛顿一莱布尼茨公式 5了解广义积分的概念,会计算广义积分 6掌握用定

10、积分表达和计算一些几何量与物理量(平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、功、引力、压力)及函数的平均值等 四、向量代数和空间解析几何考试内容: 向量的概念向量的线性运算向量的数量积和向量积向量的混合积两向量垂直、平行的条件两向量的夹角向量的坐标表达式及其运算单位向量方向数与方向余弦曲面方程和空间曲线方程的概念平面方程、直线方程平面与平面、平面与直线、直线与直线的以及平行、垂直的条件点到平面和点到直线的距离球面母线平行于坐标轴的柱面旋转轴为坐标轴的旋转曲面的方程常用的二次曲面方程及其图形空间曲线的参数方程和一般方程空间曲线在坐标面上的投影曲线方程 考

11、试要求 1. 理解空间直角坐标系,理解向量的概念及其表示。 2掌握向量的运算(线性运算、数量积、向量积、混合积),了解两个向量垂直、平行的条件。 3理解单位向量、方向数与方向余弦、向量的坐标表达式,掌握用坐标表达式进行向量运算的方法。 4掌握平面方程和直线方程及其求法。 5会求平面与平面、平面与直线、 直线与直线之间的夹角,并会利用平面、直线的相互絭(平行、垂直、相交等)解决有关问题。 6会求点到直线以及点到平面的距离。 7. 了解曲面方程和空间曲线方程的概念。 8. 了解常用二次曲面的方程及其图形,会求以坐标轴为旋转轴的旋转曲面及母线平行于坐标轴的柱面方程。 9. 了解空间曲线的参数方程和一

12、般方程.了解空间曲线在坐标平面上的投影,并会求其方程。五、多元函数微分学 考试内容: 多元函数的概念二元函数的几何意义二元函数的极限和连续的概念 有界闭区域上多元连续函数的性质多元函数偏导数和全微分全微分存在的必要条件和充分条件 多元复合函数、隐函数的求导法 二阶偏导数方向导数和梯度空间曲线的切线和法平面曲面的切平面和法线二元函数的二阶泰勒公式多元函数的极值和条件极值多元函数的最大值、最小值及其简单应用 考试要求 1理解多元函数的概念,理解二元函数的几何意义。 2了解二元函数的极限与连续性的概念,以及有界闭区域上连续函数的性质。 3理解多元函数偏导数和全微分的概念,会求全微分,了解全微分存在的

13、必要条件和充分条件,了解全微分形式的不变性。 4理解方向导数与梯度的概念并掌握其计算方法。 5掌握多元复合函数一阶、二阶偏导数的求法。 6了解隐函数存在定理,会求多元隐函数的偏导数。 7了解空间曲线的切线和法平面及曲面的切平面和法线的概念,会求它们的方程。 8了解二元函数的二阶泰勒公式。 9理解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决一些简单的应用问题。 六、多元函数积分学考试内容:二重积分与三重积分的概念、性质、计算和应用-(调整知识点:将二重积分

14、、三重积分的概念及性质 二重积分、三重积分的计算和应用调整为二重积分与三重积分的概念、性质、计算和应用)- 两类曲线积分的概念、性质及计算两类曲线积分的关系格林(Green)公式平面曲线积分与路径无关的条件已知全微分求原函数两类曲面积分的概念、性质及计算 两类曲面积分的关系高斯(Gauss)公式斯托克斯(STOKES)公式散度、旋度的概念及计算 曲线积分和曲面积分的应用考试要求1理解二重积分、三重积分的概念,了解重积分的性质,了解二重积分的中值定理。2掌握二重积分的计算方法(直角坐标、极坐标),会计算三重积分(直角坐标、柱面坐标、球面坐标)。3理解两类曲线积分的概念,了解两类曲线积分的性质及两类曲线积分的关系。4掌握计算两类曲线积分的方法。5掌握格林公式并会运用平面曲线积分与路径元关的条件,会求全微分的原函数。6了解两类曲面积分的概念、性质及两类曲面积分的关系,掌握计算两类曲面积分的方法,会用高斯公式、斯托克斯公式计算曲面、曲线积分。7了解散度与旋度的概念,并会计算。8会用重积分、曲线积分及曲面积分求一些几何量与物理量(平面图形的面积、体积、曲面面积、弧长、质量、重心、转动惯量、引力、功及流量等)。七、无穷级数考试内容:常数项级数的收敛与发散的概念收敛级数的和的概念级数的基本性质与收敛的必要条件几何级数与p级数以及它们

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1