1、第十一章全等三角形复习第十一章:全等三角形导学案1、把两个全等的三角形重合在一起,重合的顶点叫做 ,重合的边叫做 ,重合的角叫做 。“全等”用“ ”表示,读作 。2、如图所示,OCAOBD, 对应顶点有:点_和点_,点_和点_,点_和点_; 对应角有:_和_,_和_,_和_;对应边有:_和_,_和_,_和_. 3、全等三角形的性质:全等三角形的 相等, 相等。 (二)、练一练1如图,ABCCDA,AB和CD,BC和DA是对应边。写出其他对应边及对应角。 课后训练1. 如图所示,若OADOBC,O=65,C=20,则OAD= . 第1题图 第2题图2. 如图,若ABCDEF,回答下列问题:(1)
2、若ABC的周长为17 cm,BC=6 cm,DE=5 cm,则DF = cm(2)若A =50,E=75,则B= 3. 如图,AOBCOD,那么ABD与CDB相等吗?为什么? 第3题图4. 如图:RtABC中, A=90,若ADBEDBEDC,则C= 课题:11.2三角形全等的判定(SSS)导案1、例如图,ABC是一个钢架,AB=AC,AD是连结点A与BC中点D的支架求证:ABDACD证明:D是BC = 在 和 中AB= BD= AD= ABD ACD( )温馨提示:证明的书写步骤:准备条件:证全等时需要用的间接条件要先证好;三角形全等书写三步骤:A、写出在哪两个三角形中,B、摆出三个条件用大
3、括号括起来,C、写出全等结论。1、如图,OAOB,ACBC. 求证:AOCBOC.2.如图,点B、E、C、F在同一直线上,且AB=DE,AC=DF,BE=CF,请将下面说明ABCDEF的过程和理由补充完整。解:BE=CF (_)BE+EC=CF+EC即BC=EF在ABC和DEF中 AB=_ (_) _=DF(_) BC=_ ABCDEF (_)3如图,已知AB=DE,BC=EF,AF=DC,则EFD=BCA,请说明理由。课题:11.2三角形全等的判定(SAS)导学案 1、 如图,ADBC,D为BC的中点,那么结论正确的有 A、ABDACD B、B=C C、AD平分BAC D、ABC是等边三角形
4、2、如图,已知OA=OB,应填什么条件就得到AOCBOD(允许添加一个条件) 3、四、能力提升:(学有余力的同学完成)如图,已知CA=CB,AD=BD,M、N分别是CA、CB的中点,求证:DM=DN课题:11.2三角形全等的判定(ASA、AAS)导学案1)用数学语言表述全等三角形判定(三)在ABC和中, ABC 在ABC和中, ABC 二、合作探究1、例1、如下图,D在AB上,E在AC上,AB=AC,B=C求证:AD=AE2已知:点D在AB上,点E在AC上, BEAC, CDAB,AB=AC,求证:BD=CE三、学以致用1、如图,在ABC中,B=2C,AD是ABC的角平分线,1=C,求证AC=
5、AB+CE五、课后检测 1、2、3、课题:11.2三角形全等的判定(HL)导学案 1.用数学语言表述上面的判定方法在RtABC和Rt中, RtABCRt 2.直角三角形是特殊的三角形,所以不仅有一般三角形判定全等的方法 “ ”、“ ”、 “ ”、 “ ”、 还有直角三角形特殊的判定方法 “ ”三、学以致用1、如图,ABC中,AB=AC,AD是高,则ADB与ADC (填“全等”或“不全等” )根据 (用简写法)2、判断两个直角三角形全等的方法不正确的有( )A、两条直角边对应相等 B、斜边和一锐角对应相等C、斜边和一条直角边对应相等 D、两个锐角对应相等3、如图,B、E、F、C在同一直线上,AF
6、BC于F,DEBC于E,AB=DC,BE=CF,你认为AB平行于CD吗?说说你的理由答:AB平行于CD理由: AFBC,DEBC (已知) AFB=DEC= (垂直的定义)BE=CF,BF=CE在Rt 和Rt 中 ( ) = ( ) (内错角相等,两直线平行)课题:11.3角的平分线的性质(1)导学案1、用数学语言来表述角的平分线的性质定理:如右上图,OC是AOB的平分线,点P是 2、如图:在ABC中,C=90,AD是BAC的平分线,DEAB于E,F在AC上,BD=DF; 求证:CF=EB三、学以致用在RtABC中,BD平分ABC, DEAB于E,则图中相等的线段有哪些?相等的角呢?哪条线段与
7、DE相等?为什么?若AB10,BC8,AC6,求BE,AE的长和AED的周长。四、当堂检测1.如图,在ABC中,ACBC,AD为BAC的平分线,DEAB,AB7,AC3,求BE的长2、如图,CDAB,BEAC,垂足分别为D,E,BE,CD相交于点O,OBOC,求证12课题:第十一章全等三角形复习(1、2) 一、学习目标:1.知道第十一章全等三角形知识结构图.2.通过基本训练,巩固第十一章所学的基本内容.3.通过典型例题的学习和综合运用,加深理解第十一章所学的基本内容,发展能力.二、学习重点和难点:1.重点:知识结构图和基本训练.2.难点:典型例题和综合运用.三、归纳总结,完善认知1.总结本章知
8、识点及相互联系.2.三角形全等探究三角形全等的条件四、基本训练,掌握双基1.填空(1)能够 的两个图形叫做全等形,能够 的两个三角形叫做全等三角形.(2)把两个全等的三角形重合到一起,重合的顶点叫做 ,重合的边叫做 ,重合的角叫做 .(3)全等三角形的 边相等,全等三角形的 角相等.(4) 对应相等的两个三角形全等(边边边或 ).(5)两边和它们的 对应相等的两个三角形全等(边角边或 ).(6)两角和它们的 对应相等的两个三角形全等(角边角或 ).(7)两角和其中一角的 对应相等的两个三角形全等(角角边或 ).(8) 和一条 对应相等的两个直角三角形全等(斜边、直角边或 ).(9)角的 上的点
9、到角的两边的距离相等.2.如图,图中有两对三角形全等,填空: (1)CDO ,其中,CD的对应边是 ,DO的对应边是 ,OC的对应边是 ; (2)ABC ,A的对应角是 ,B的对应角是 ,ACB的对应角是 .3.判断对错:对的画“”,错的画“”. (1)一边一角对应相等的两个三角形不一定全等. ( ) (2)三角对应相等的两个三角形一定全等. ( ) (3)两边一角对应相等的两个三角形一定全等. ( ) (4)两角一边对应相等的两个三角形一定全等. ( ) (5)三边对应相等的两个三角形一定全等. ( ) (6)两直角边对应相等的两个直角三角形一定全等. ( ) (7)斜边和一条直角边对应相等
10、的两个直角三角形不一定全等. ( ) (8)一边一锐角对应相等的两个直角三角形一定全等. ( )4.如图,ABAC,DCDB,填空: (1)已知ABDC,利用 可以判定 ABODCO; (2)已知ABDC,BADCDA,利用 可以判ABDDCA; (3)已知ACDB,利用 可以判定ABCDCB; (4)已知AODO,利用 可以判定ABODCO; (5)已知ABDC,BDCA,利用 可以判定ABDDCA.5.完成下面的证明过程: 如图,OAOC,OBOD. 求证:ABDC. 证明:在ABO和CDO中, ABOCDO( ).A .ABDC( 相等,两直线平行).6.完成下面的证明过程: 如图,AB
11、DC,AEBD,CFBD,BFDE. 求证:ABECDF. 证明:ABDC, 1 . AEBD,CFBD, AEB . BFDE, BE .在ABE和CDF中, ABECDF( ). 五、典型题目,加深理解题1 如图,ABAD,BCDC. 求证:BD. 题2 证明:角的内部到角的两边的距离相等的点在角的平分线上. (先结合图形理解命题的意思,然后结合图形写出已知和求证,已知、求证及证明过程) 题3 如图,CDAB,BEAC,OBOC. 求证:12. 六、综合运用,发展能力7.如图,OAAC,OBBC,填空: (1)利用“角的平分线上的点到角的两边的距离相等”,已知 ,可得 ;(2)利用“角的内部到角两边距离相等的点在角的平分线上”,已知 ,可得 ;8.如图,要在S区建一个集贸市场, 使它到公路、铁路的距离相等,并且离公路与铁路交叉处300米.如果图中1厘米表示100米,请在图中标出集贸市场的位置.9.如图,CDCA,12,ECBC. 求证:DEAB.10.如图,ABDE,ACDF,BECF. 求证:ABDE. 11.如图,在ABC中,D是BC的中点, DEAB,DFAC,BECF. 求证:AD是ABC的角平分线. (第11题图) 12.选做题: 如图,ACB=90,AC=BC,BECE,ADCE. 求证:ACDCBE.(第12题图)
copyright@ 2008-2022 冰豆网网站版权所有
经营许可证编号:鄂ICP备2022015515号-1