ImageVerifierCode 换一换
格式:DOCX , 页数:80 ,大小:1.61MB ,
资源ID:4022130      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/4022130.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(功能材料性能与检测方法.docx)为本站会员(b****6)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

功能材料性能与检测方法.docx

1、功能材料性能与检测方法第一章 功能材料的简介及其分类一、 功能材料的发展与现状图1-1 功能材料的发展概况近年来功能材料快速发展的动力: (1)新的科学理论和现象的发现 (2)新材料制备技术的发展 (3)新的工程与技术的需要 二、 功能材料的定义及分类利用材料的物理、化学与生物学等性能制造具有电、磁、光、声、热、生物等功能器件的材料,统称为功能材料。如光学材料、电子材料、磁学材料等。定义:具有优良的电学、磁学、光学、热学、声学、力学、化学和生物学等功能及其相互转换功能,被用于非结构目的的高技术材料。功能材料分类:(1) 按物理属性分类 金属功能材料 无机非金属功能材料 有机功能材料 复合功能材

2、料(2) 按功能特性分类 磁学功能材料 电学功能材料 光学功能材料 声学功能材料 热学功能材料 力学功能材料 生物医学功能材料(3) 按应用领域分类 仪表仪器材料 传感器材料 电子材料 电信材料 储氢材料 储能材料 形状记忆材料三、 功能材料的特点 微观结构方面:超低缺陷密度、结构精细、纯度高 在性能方面:功能材料以材料的电、磁、声、光等物理、化学和生物学特性为主 在用途方面:功能材料制备成元器件,材料与器件一体化 在制造技术方面:多学科交叉、技术含量高、品种多、批量小、更新快第二章 材料的物理性能一、 量子特征1. 波粒二象性图1-2 电子与光的关系 电子的波粒二象性假说(法国科学家德布罗意

3、): 与一个动量为p、能量为E的粒子相联系的单色场的波长或频率,可以通过普朗克常数相联系:=h/p, =E/h。称为德布罗意波长。 采用波数k=2/和角频率=2,并定义一个新常数F=h/2=1.054410-34J.s,可以得到:P=Fk, E=F 结论:光与粒子的动力学性质(动量和能量),可以统一表述。例:动能E=eV的电子德布罗意波长为:(1)具有能量是102-105eV能量的电子,其德布罗意波长为0.001-0.1nm (1nm=10)(2)热中子德布罗意波长为0.185nm,与X射线波长相近。 即:电子衍射与中子衍射都可用于晶体衍射实验。因此可以用一个延伸到整个空间的恒定振幅的谐波(物

4、质波x)来表示一个具有精确动量(p)的自由粒子。(海森伯不确定原理:粒子的位置不确定度x与动量不确定度p不能同时准确测知)不确定原理的表示方法决定材料物性的主导因素:1 原子系统(经典粒子):反映位置序或粒子序(性)的效应;2 电子系统(量子力学特征):反应动量序或德布罗意波序(性)的效应。通常,根据体系尺寸或粒子的平均间距a来确定:当a,粒子序为主;德布罗意波长为温度的函数,可用简并温度T0来表征。,当TT0时,粒子序为主导;当TT0时,波序占主导地位。得到结论:电子系统行为多反应波序的效应;原子系统多反应粒子序。例:(1)电子系统:以原子间距为特征尺度a,电子质量为10-27g,可以计算出

5、简并温度T0约104K。即T T0,电子系统反应出波序的效应。(2)原子系统:原子质量为电子质量的103倍以上, T0约20K,对凝聚态物质,粒子序占主导。(3)氦元素的T0约5K,其液化温度很低,表现出超流动性,存在量子力学现象。2. 经典统计与量子统计 表征材料宏观物理性质的方法:给定系统的物理条件(粒子数、总能量),就有一最可几配分,达到这个配分时,就说这个系统处于统计平衡,可以用这个统计平衡值表征材料宏观的物理性质。主要统计方法 经典统计:麦克斯韦-玻耳兹曼分布律-粒子性占主导的系统;系统由全同的但可区别的粒子所组成。全同粒子:指具有相同结构和组成;可区别:指在原则上有确定的轨迹可跟踪

6、。不可区别:只能区别每个能级上的多少粒子,但不能区分是哪几个。 量子统计:波动性占主导的系统;系统由全同的并且是不可区分的粒子组成。量子统计中: 遵从泡利不相容原理时,两个粒子不能处于同一量子态Ei,系统的波函数必然是反对称的,满足这些要求的粒子为费米子,它遵从费米-狄拉克统计;在费米子系统中,单粒子态Ei的平均占有数为费米狄拉克分布:对于单粒子能级分布非常稠密的情形采用单粒子态密度的概念,态密度分布遵守费米分布函数:式中:EF为化学势,常称为费米能,表示该系统中费米子的最大能量。 零温度下,粒子只占有最下面的资用能级,直到费米能EF的。 在较高温度时,较低能量的态通过吸收能量从而转移到能量大

7、于EF的态。 对于KBTEF的温度,所以低能量态全部被占有,只有自由能接近EF的费米子能够通过吸收较小能量KBT 而移至费米能以上的未被占有态;而远离费米面的的低能态费米子只能吸收足够的能量才能跃迁到费米面上(如:吸收光子)。 不遵从泡利不相容原理时,系统对处于相同量子态的粒子数目没有限制,描写粒子系统的波函数必然对称,满足这些要求的粒子为玻色子,它遵从玻色-爱因斯坦统计;对于玻色子,单粒子态Ei的平均占有数为波色爱因斯坦分布:对于单粒子能级分布非常稠密的情形采用单粒子态密度的概念,态密度分布遵守玻色分布函数:式中:为化学势。 上述三种统计分布可以统一写成: 其中:a=-1,玻色-爱因斯坦统计

8、 a=+1, 费米-狄拉克统计 a=0, 经典玻耳兹曼统计 当,上述三种统计形式没有区别,即量子统计可由经典统计代替。 实践证明:所有自旋为1/2的粒子(电子、质子、中子、中微子、粒子)都是费米子;所有整数自旋的粒子(光子、介子)都属于玻色子。 粒子在低能级的凝聚是玻粒子系统的重要性质,当化学势增大并趋向于最低能级(设为零)时,零能级的分布将趋于无穷,意味着粒子在最低能级的凝聚,即称为:玻色-爱因斯坦凝聚(Bose-Einstein condensation, BEC) 费米子构成的系统不能直接实现BEC凝聚,但两个费米子可以配对方式形成准玻色子,也可产生BEC现象-超导、超流现象的原因。二、

9、 固态电子理论1 金属自由电子理论 相关模型:(1) 简单金属的电子结构-特鲁德-索末菲自由电子模型(Jellium模型):价电子完全公有化,构成金属中导电的自由电子,离子芯与价电子的相互作用被完全忽略,且自由电子体系被视为电子间毫无相互作用的理想气体(电子气)。(2) 金属自由电子气模型-建立电子动能与波矢之间的关系:,电子占有能态是量子化的,电子在空间的分布呈球形分布,等能面是以原点为球心的球面,具有抛物线型能带曲线。图1-3 自由电子气模型的抛物线型能态密度曲线对于费米子:金属中的电子是最典型的费米子,其态密度表达式: 如果体积为V中电子的总数为N,小于资用能级的总数,则电子占有N/2个

10、能量最低能态,而这些电子所占有的最高能级为费米能EF。n为电子密度。N很大,所以在空间上成为球,称费米球,其半径为费米波矢kF。且kF3=32n。模型优势:自由电子模型可以定性解释金属传输性能(导电和导热)。 紧靠费米能的半占有状态上的电子漂移-金属高导电性 金属的功函数是从最高的占有能级上取出一个电子所需的能量,在绝对零度时,即为费米能。室温下很少的电子被激发到高于费米能。模型不足:不能正确解释绝缘体。2 能带概念金属自由电子理论忽略了离子的作用,认为电子是在金属内部的均匀势场中运动的,实际上,固体中电子是在离子组成的非均匀势场中运动的。运用能带理论可以用来对金属、半导体、绝缘体的电子结构进

11、行统一描述。在含有N个原子的晶体中,每个原子贡献一个轨道,最终就形成一个包含N个紧密相间的能级的能带,也称价带,以离域的形式存在。当原子相距较大而孤立存在时(原子间无相互作用),每个原子的电子都处于原子的特定能级上。当原子间距缩小到晶体的正常原子间距时,属于两个原子的同一能级的电子云会发生重叠。图1-4 双原子分子的分子轨道分子轨道理论表明:构成双原子分子的两个原子某一原子轨道相重叠,结果该原子轨道分裂成离域于两个原子的两个分子轨道。对于N个原子和分子体系,每个原子能级将会分裂出N个分子轨道。随着分子轨道数目增加,各相邻分子轨道间的平均能隙必须减小,如图5。N无限大时,会形成连续能带。能级分裂

12、从价电子开始。(a)(b)图1-5 分子轨道理论中的能级分裂一个特定能带的宽度与原子间距离有关,当原子间距减小时,能带开始出现重叠。固体的电子性质,主要决定于价电子所占有的、与最高原子壳层对应的能带。这个最高能带如未被完全填满,则称为导带;如果完全填满了,称为价带,而将在价带上方的空带称为导带。图1-6 原子间距对原子能级和能带的影响3 布里渊区与能态密度电子在周期性势中的波函数可以导出固体的能带。电子能量E是波矢k的函数,在某些k值处,能量是不连续的。电子通过点阵自由运动,只有在k值接近间断点时,点阵才影响电子的运动,产生能隙,而连续能量区域则构成能带。布里渊区:是指在k空间中以倒格矢作倒格

13、点,选取一个格点为原点,作由原点到各倒格点的垂直平分面,这些面相交所围成的多面体区域。含原点的多面体称为第一布里渊区,每个布里渊区所包含的波矢量数目等于晶体的原胞数,亦包含每个能带中有全部电子态。在布里渊区内能量是连续变化;在布里渊区周界上,能量不连续变化。图1-7 一维点阵的布里渊区和能带布里渊区内电子速度是变化的,在能带顶和能带底电子速度都等于零,在能带中间区域,电子的速度很接近于自由电子的速度。对三维晶体,在k空间的不同方向上,布里渊区的边界具有不同的k值及相应的能量。相邻布里渊区间的能量关系有: 如果第一布里渊区的所有方向的能态的最高能量均低于第二布里渊区的所有方向的能态的最低能量值,

14、则存在禁带,电子在k空间先填满第一布里渊区,再填第二布里渊区,其能态密度曲线如图8(a)。 如果第一布里渊区的某些最高能量低于第二布里渊区的最低能量,则发生布里渊区的重叠,电子在充满第一布里渊区的最高能量之前先进入第二布里渊区,然后继续填充第一布里渊区的剩余能态和第二布里渊区的低能状态,其能态密度曲线如图8(b)。图1-8 布里渊区的电子能态密度(a)相邻布里渊区之间存在禁带 (b) 相邻布里渊区产生重叠 能带理论的应用:成功解释了固体的不同电学性质。 金属能带结构:最高占有带,即价带,仅部分充满;原因:独立地占有费米能级附近的状态上的电子是可以运动的途径:电子数目不足以填满布里渊区、或者布里

15、渊区发生重叠 绝缘体的能带结构:一个布里渊区(价带)是填满的,并且不与下一个全空的布里渊区(导带)重叠,电子能量被“冻结”,价带中只有少量电子可以在外电场作用下激发到空带上。 本征半导体能带结构:与绝缘体类似,但在原子的平衡间距处,价带和导带间的能隙要小得多,价带中的电子容易激发到导带中。图1-9能带结构(a)金属 (b) 绝缘体 (c)半导体图1-10半导体的能态密度曲线(a)本征半导体 (b) 杂质半导体 杂质半导体能带结构:在填满价带和空的导带之间的能隙中有一杂质能级,当温度升高时,电子由于热激发可以从杂质能级进入导带,也可以从价带顶部进入杂质能级,形成n型或p型半导体 半金属能带结构:

16、价带和导带在k空间的某些方向相互交叠,产生金属型的小口袋,形成载流子浓度低的金属型导体。如As、Sb、Bi晶格振动理论1 简谐振动固体中原子是围绕其平衡位置振动的,即称晶格振动。将晶格设想为质量为M的原子通过弹性系统为k的弹簧相联系构成的网格,即:可以将晶格振动系统当做是由N个互相独立的一维简谐振子所组成(N为晶格的自由度)。模型如图11:图1-11 晶格振动模型能量为的晶格振动的简正模能量量子,称为声子。声子有确定的能量,但位置不确定,声子也是玻色子。谐振子的能量分布由麦克斯韦-玻耳兹曼统计来描述。2 爱因斯坦模型与德拜模型爱因斯坦模型:假定组成三维固体的N个原子的振动是互相独立的,可以视为

17、以相同频率作简谐振动的3N个振子,在热平衡状态固体的总能量为:式中:E称为爱因斯坦频率,而固体的比热容即为:其中:为爱因斯坦温度模型优势:爱因斯坦模型可以解释固体比热容的高温极限3N kB=3R。模型不足:但绝对零度时,该模型与实验结果不符。德拜模型:将晶格视为连续介质,晶格原子的振动在固体中形成弹性波(声波),这些原子的振动有3N个独立的振动模式,每一种模式等价于一个谐振子。其平均能量为:在晶体的总能量为:式中:称为频谱上端截止频率,也称德拜频率。n=N/V为晶体的原子数密度。德拜模型得到的晶体比热容为:其中:为德拜温度模型优势:能解释低温下热容主要来自于长波长的振动模,在长波长时,晶格为连

18、续介质。模型不足:德拜温度与温度无关与实验不符。3 格波与晶格振动模型德拜模型中,采用了连续介质的线性色散关系。当原子间距比波长小得多时是合理的,但波长减小时,晶格的不连续性就显得重要了。这时原子会对波产生散射。晶体中原子总是围绕其平衡位置不断振动,同时由于原子的相互作用,各个原子又在运动。系统中所有原子以相同的频率(简正模)振动,这些振动相互作用间存在固定的位相关系,因此在晶格是存在着角频率为的平面波,称为格波。对于格波,可采用弹簧连系的质量为M的原子链模型来处理,得到相应的格波解。由于晶格的平衡对称性,格波的解具有平面波的形式,系统的所有基元以相同的频率振动,这些振动模式即为简正模。简正模

19、的角频率与波矢之间具有确定的关系,即色散关系,或称振动频谱-q。1 一维布拉菲格子的色散关系: 在长波极限q0时,晶格相当于一个弹性连续介质,格波与长波长声波等同;图1-12 一维单原子链的-q色散曲线2 单胞由质量为M1和M2的两种原子组成的双原子晶格,其色散关系:负号对应的色散关系与单原子晶格的色散关系一样,在q0时表现为长波长的弹性波,这一曲线称为声学支。相应的振动模式为声学模,描述了原胞内原子质心的运动。正号曲线频率近似,其值位于红外光区,这支曲线称为光学支,相应的振动模式为光学模,描述了原胞内原子的相对运动,在离子晶体中,由于离子的相对运动产生电偶极矩的振动,从而与电磁波产生强的耦合

20、,引起对远红外的强烈吸收。图1-13 一维双原子链的-q色散曲线三、 相互作用的电子体系1 准粒子体系自由电子理论与固体能带理论是基于单电子近似获得的结论。实际的固体中原子分为价电子和离子芯,由于离子芯质量远大于电子,所以在金属自由电子模型和能带理论中都忽略了电子与电子间的相互作用(称关联)。一个电子系统中不可能有两个电子具有相同的一组量子数,这就是泡利不相容原理。因而电子与电子间作用主要有两种:受到屏蔽的电子间排斥力和通过晶格作为媒介发生的吸引力。电子与电子间的相互作用使一个电子周围由库仑和交换作用造成的电子贫乏区与电子一起运动,构成准粒子。通常情况下,准粒子具有独立粒子的许多特征。2 强磁

21、性与超导电性 电子间的相互作用可能导致许多重要物理现象,比如强磁性和超导电性。 在多电子体系中存在的自旋之间的相关性,或者说不同阵点上的离子磁矩之间的库仑相关性,是固体强磁性的物理起因,磁效应主要来自电子间的库仑相关,而不是磁矩间的磁相互作用。 相邻原子间的交换作用本质上是由波函数的对称性引起的静电效应,其强度基本上由库仑作用给出,是一种很强的相互作用。自旋平行电子倾向于远离,而在自旋反平行状态,电子可以靠得较近,产生强的库仑排斥,系统能量升高。这种两个原子的自旋间交换相互作用可以分为直接交换作用、非定域导带电子的巡游电子交换作用、间接交换作用、超交换作用和双交换作用。 超导电性的根源在于电子

22、由于吸引相互作用而配对。两个电子间的直接库仑作用是排斥的,所以要形成吸引力需要其他媒介。成功解释超导的BCS理论是基于电子与晶格振动的耦合所形成的配对效应。 Cooper pair 为玻色子,在超导转变温度下费米面附近的电子可两两配对存在,在动量空间凝聚成库柏对的体系,形成超导态。在超导体中有两种载流子:库柏对与单粒子态的正常电子。但只有库柏对对超导电性产生贡献。3 强关联电子体系准粒子概念和能带理论在解释常规导体、半导体和绝缘体的物理性质时是非常成功的,但当晶格常数加大、能带变窄时,电子间库仑屏蔽减弱,电子间的相互作用就变得重要,单电子模型的能带理论会因强的电子间关联作用而失效。如过渡族金属

23、化合物NiO、MnO、CoO。Mott转变:是指有些Mott 绝缘体随温度升高转化为金属,这是一种典型的窄能带现象。当晶格常数增加到临界值时,能带宽度减小,电子动能也相当小,晶体中电子运动不再是扩展态,而是以格点为中心的定域化,处于定域态,致使电导率为零,成为绝缘体。电子运动从扩展态到定域态的转变主要源于电子-电子作用强度的效应。通过改变材料的有序度,可使电子运动从扩展态进入定域态,材料由金属转变为非金属,这类金属与绝缘体的转变为:Anderson转变。图1-14 Mott绝缘体的能级示意图Mott绝缘体是指由于电子与电子间强的库仑排斥,不能自由在格点上移动,表现为绝缘体的固体。可以通过掺杂来

24、控制其导电性能,强关联电子作用可以解释高温超导材料的导电机制。第三章 半导体材料输运性能及表征 载流子的输运:介绍固体中载流子在外力作用下的运动及其所产生的物理现象。 导电性是物质最重要的输运性质之一,源于载流子在电场作用下的迁移运动。电导率可以描述物质导电性的强弱,按电导率的大小可以将材料分为金属、半导体和绝缘体。如下图:图2-1 金属、半导体和绝缘体的室温电导率不同类型物质具有不同的载流子,载流子在物质中的运动受到不同因素的影响而产生各种效应,可以通过施加不同的外界作用来控制载流子运动,得到所希望的功能。半导体材料室温电导率在10-8-103(cm)-1之间。半导体材料对光、温度、电场、磁

25、场、压力等外界作用具有敏感性,会产生光电、热电、压电、光致发光、电致发光等现象和效应;同时对半导体材料对自身成分和结构也有灵敏性,人们可以通过改变材料成份和结构来控制材料的性质。一、 热电效应1金属的热电效应热电偶的原理(Seebeck effect) 如图2-2所示,热电效应也称温差电效应。BC为导电体I,AB和CD为另外一种导体II,两种导体在B和C处联接,构成一热电偶。如果B和C这两个接点处的温度不同,则A与D之间会出现电位差,即温差电动势,该效应称为Seebeck effect。A、D间的电位差取决于B、C间的温度差,与A、D处温度无关。温差电动势为: 其中为温差电动势率。对于某些材料

26、构成的热电偶,b值基本上为零,将热电偶的一端B或C放在某一固定的参考温度中,另一端C或B放在被测温度处,就可以准确测量出温度。珀尔帖效应(Peltier effect) 与Seebeck effect相反,当电流通过图2-2所示的两种导体组成的II/I/II结构时,在I与II的两接点B、C处,一处温度降低(放热),另一处温度升高(吸热)。 如果导体I的功函数大于导体II的功函数,则导体I的费米能级低于导体II的费米能级(因为功函数为费米能级与真空能级之间的能量差)。假设电流从A流向D,则电子从D流向A,当电子由导体II经过C流向导电体I时,电子从高费米能级流向低费米能级,电子能量降低,会放出能

27、量(放热);在经过B点时,电子能量升高。则从周围吸收能量(吸热)。利用这一效应可以实现致冷和致热。图2-2 塞贝克效应和珀尔帖效应的装置 图2-3 热探针法测量导电类型2半导体的热电效应塞贝克效应(Seebeck effect)和珀尔帖效应(Peltier effect)也同样出现在两个半导体材料间。可以用来测定半导体材料的导电类型。原理:如图2-3,当半导体为n型时,多数载流子是电子,热探针(上电极)附近的电子运动较强,向下扩散,使探针附近缺乏电子,而在下电极附近积累电子,可以形成图2-3所示的电动势极性。当半导体为P型时,多数载流子是空穴,可以得到相反的电动势。可见电子与空穴产生的温差电动

28、势率的符号是相反的。二、 半导体的能带 随着原子间距的缩短,半导体材料的能带通常会发生交叠,分裂成两个能带:价带(valence band)和导价(conduction band),如图2-4所示。价带与导带由禁带隔开,其能隙(也称禁带宽度)为Eg,禁带宽度是材料的重要物理参数。图2-4 随电子间距的缩小能级展宽成带继而发生交叠和分裂(共价元素晶体) 金刚石的禁带宽度为5.48eV,为绝缘体;硅的禁带宽度为1.12eV, 锗的禁带宽度为0.67eV,为半导体;灰锡的禁带宽度为0.08eV,呈金属性。 晶体的结构是各向异性的,因此k空间中不同方向的能带有不同的形状, 如图2-5所示。图2-5 K

29、空间中Kx方向硅的能带结构三、 载流子和费米能级 随着温度升高,电子会从价带向导带跃迁,这称为带间跃迁。导带中的电子和价带中空穴具有相反电荷,在电场作用均可以导电,称为载流子。 由本征热激发产生的载流子为本征载流子,它是不断产生和复合的。室温下半导体的本征载流子浓度很低,(Si只有1010/cm3),所以导电率很低。通过掺杂(dope)可以得到掺杂半导体(doped semiconductor),并通过改变掺杂元素来改变半导体的类型。如:掺杂有五个价电子的元素(P),可以得到n型半导体;掺杂有三个价电子的元素(B),可以得到P型半导体。掺杂半导体能带如图2-6。图2-6 掺杂半导体的能带图(a

30、) n型半导体 (b) p型半导体 半导体平衡电子浓度n0可以按下式计算: 其中,f(E)是电子的统计分布函数,它给出能量为E的电子态上电子占据的几率;gC(E)为导带底附近的状态密度,EC为导带底的能量。f(E)为费米分布: 其中: kB为玻耳兹曼常数;EF为费米能级,该参数描述了电子的填充水平,能量为EF的电子态的占据几率总是1/2。 平衡电子浓度为: NC为导带底的有效状态密度 平衡空穴浓度为: NV为价带顶的有效状态密度 式中:分别为电子和空穴的有效质量。对于本征半导体,导带的电子数等于价带的空穴数。可以得到本征半导体的费米能级为:,位于禁带中央。 本征载流子浓度可用下式表示,其大小随禁带宽度增加而指数下降。 上式中,本征半导体载流子浓度随温度升高呈指数上升,这反映半导体材料的热敏性,可用于制备热敏电阻,用于温度自动测量与控制。 N型半导体的费米能级位于禁带上半部,电子浓度n0大于空穴浓度p0,电子为多数载流子,称为多子;空穴为少数载流子,称为少子。 P 型半导体的费米能级位于禁带下半部,电子浓度小于空穴浓度,空穴为多数载流子,称为多子;电子为少数载流子,称为少子。 上式表明,半导体材料的平衡电子和空穴浓度的乘积为一常数,与掺杂无关,是温度的函数,是该温度下本征半导体载流子浓度的平方。 能量图中,坐标向上移动,电子能量升高;坐标向下移动,空穴能量是升高。

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1