ImageVerifierCode 换一换
格式:DOCX , 页数:22 ,大小:109.13KB ,
资源ID:3726336      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/3726336.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(最新R语言因子实验设计和解释案例分析报告 附代码数据.docx)为本站会员(b****6)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

最新R语言因子实验设计和解释案例分析报告 附代码数据.docx

1、最新R语言因子实验设计和解释案例分析报告 附代码数据R语言因子实验设计和解释案例分析报告示例1:两组比较示例2:多个组实例3:两个条件,两个基因型,一个交互项o野生型治疗效果(主效应)。o突变体治疗的效果o没有治疗的突变型和野生型之间有什么区别?o通过治疗,突变型和野生型有什么区别?o基因型的不同反应(相互作用项)实例4:两个条件,三个基因型o基因型I的条件效应(主效应)o基因型III的条件效应。o基因型II的条件效应。o在条件A下III与II的影响o基因型III与基因型I的条件效应的相互作用项基因型III与基因型II的条件效应的相互作用项。为了允许iDEP中的复杂模型(http:/ge-la

2、b.org/idep/),我尝试了解如何构建事实模型,并从DESeq2中提取期望的结果。以下是基于DESeq2中resutls()函数的帮助文档,以及Mike Love对用户提问的回答。我想要做的一个重点是,当研究设计涉及多个因素时(参见上面关于基因型+治疗实例的图),结果的解释是棘手的。与R中的回归分析类似,分类因素的参考水平构成了我们的分歧的基础。然而,默认情况下,它们是按字母顺序确定的。选择每个因素的参考水平是至关重要的。否则你的系数可能会有所不同,这取决于你如何进入DESeq2的实验设计。这可以通过R中的relevel()函数完成。参考级别是构成有意义比较基础的因素的基线级别。在野生型

3、与突变型实验中,“野生型”是参考水平。在治疗与未治疗,参考水平显然是未经处理的。例3中的更多细节。例1:两组比较首先制作一些示例数据。library(DESeq2)dds-makeExampleDESeqDataSet(n=10000,m=6)assay(dds)1:10,# sample1 sample2 sample3 sample4 sample5 sample6# gene1 6 4 11 1 2 13# gene2 9 12 23 13 14 28# gene3 58 121 173 178 118 97# gene4 0 4 0 3 8 3# gene5 27 3 6 9 8 12

4、# gene6 48 8 35 38 21 13# gene7 36 50 61 52 44 22# gene8 6 8 16 14 18 19# gene9 214 266 419 198 157 166# gene10 20 12 16 12 16 2这是一个非常简单的实验设计,有两个条件。colData(dds)# DataFrame with 6 rows and 1 column# condition# # sample1 A# sample2 A# sample3 A# sample4 B# sample5 B# sample6 Bdds-DESeq(dds)resultsName

5、s(dds)# 1 Interceptcondition_B_vs_A这显示了可用的结果。 请注意,默认情况下,R会根据字母顺序为因素选择一个参考级别。 这里A是参考水平。 折叠变化定义为B与A比较。要更改参考级别,请尝试使用“同一个”()函数。res-results(dds, contrast=c(condition,B,A)res-resorder(res$padj),library(knitr)kable(res1:5,-(3:4)baseMeanlog2FoldChangepvaluepadjgene9056360.168909-2.0453790.00000000.0001366ge

6、ne308743.897516-2.2033030.00001730.0858143gene376372.409877-1.8347870.00004340.1434712gene2054322.4949631.5374080.00006810.1689463gene46176.2274156.1252380.00020190.4008408如果我们想用B作为控制,并用B作为基线定义倍数变化。 那我们可以这样做:res-results(dds, contrast=c(condition,A,B)ix=which.min(res$padj)res-resorder(res$padj),kable

7、(res1:5,-(3:4)baseMeanlog2FoldChangepvaluepadjgene9056360.1689092.0453790.00000000.0001366gene308743.8975162.2033030.00001730.0858143gene376372.4098771.8347870.00004340.1434712gene2054322.494963-1.5374080.00006810.1689463gene46176.227415-6.1252380.00020190.4008408正如你所看到的,折叠的方向是完全相反的。 这里我们展示最重要的基因。ba

8、rplot(assay(dds)ix,las=2, main=rownames(dds)ix) 示例2:多个组假设我们有三个组A,B和C.dds-makeExampleDESeqDataSet(n=100,m=6)dds$condition-factor(c(A,A,B,B,C,C)dds-DESeq(dds)res=results(dds, contrast=c(condition,C,A)res-resorder(res$padj),kable(res1:5,-(3:4)baseMeanlog2FoldChangepvaluepadjgene23.634986-5.1017730.0348

9、6790.5515088gene204.678176-4.4909820.04456640.5515088gene3456.068672-1.4621550.01678200.5515088gene35537.847175-1.1772400.00879130.5515088gene4193.9678101.0647340.04120340.5515088Example 3: two conditions, two genotypes, with an interaction termHere we have two genotypes, wild-type (WT), and mutant

10、(MU). Two conditions, control (Ctrl) and treated (Trt). We are interested in the responses of both wild-type and mutant to treatment. We are also interested in the differences in response between genotypes, which is captured by the interaction term in linear models.First, we construct example data.

11、Note that we changed sample names from “sample1” to “Wt_Ctrl_1”, according to the two factors.dds-makeExampleDESeqDataSet(n=10000,m=12)dds$condition-factor(c(rep(Ctrl,6), rep(Trt,6)dds$genotype-factor(rep(rep(c(WT,MU),each=3),2)colnames(dds)-paste(as.character(dds$genotype),as.character(dds$conditio

12、n),rownames(colData(dds), sep=_)colnames(dds)=gsub(sample,colnames(dds)kable(assay(dds)1:5,)WT_Ctrl_1WT_Ctrl_2WT_Ctrl_3MU_Ctrl_4MU_Ctrl_5MU_Ctrl_6WT_Trt_7WT_Trt_8WT_Trt_9MU_Trt_10MU_Trt_11MU_Trt_12gene18147135728180765752496457gene2707794545436516657514767gene3163782843614107114015gene42513921500148

13、gene5001050000000kable(colData(dds)conditiongenotypeWT_Ctrl_1CtrlWTWT_Ctrl_2CtrlWTWT_Ctrl_3CtrlWTMU_Ctrl_4CtrlMUMU_Ctrl_5CtrlMUMU_Ctrl_6CtrlMUWT_Trt_7TrtWTWT_Trt_8TrtWTWT_Trt_9TrtWTMU_Trt_10TrtMUMU_Trt_11TrtMUMU_Trt_12TrtMUCheck reference levels:dds$condition# 1 Ctrl Ctrl Ctrl Ctrl Ctrl Ctrl Trt Trt

14、 Trt Trt Trt Trt # Levels: Ctrl TrtAs you could see, “Ctrl” apeared first in the 2nd line, indicating it is the reference level for factor condition, as we can expect based on alphabetical order. This is what we want and we do not need to do anything.dds$genotype# 1 WT WT WT MU MU MU WT WT WT MU MU

15、MU# Levels: MU WTBut “Mu” is the reference level for genotype, which is will give us results difficult to interpret. We need to change it.dds$genotype=relevel(dds$genotype, WT)dds$genotype# 1 WT WT WT MU MU MU WT WT WT MU MU MU# Levels: WT MUSet up the model, and run DESeq2:design(dds)-genotype+cond

16、ition+genotype:conditiondds-DESeq(dds)resultsNames(dds)# 1 Interceptgenotype_MU_vs_WT# 3 condition_Trt_vs_CtrlgenotypeMU.conditionTrtBelow, we are going to use the combination of the different results (“genotype_MU_vs_WT”, “condition_Trt_vs_Ctrl”, “genotypeMU.conditionTrt” ) to derive biologically m

17、eaningful comparisons.The effect of treatment in wild-type (the main effect).res=results(dds, contrast=c(condition,Trt,Ctrl)ix=which.min(res$padj)# most significantres-resorder(res$padj),# sortkable(res1:5,-(3:4)baseMeanlog2FoldChangepvaluepadjgene27525.388362.6078960.00005880.2684851gene2744101.029

18、54-1.6708370.00010990.2684851gene544158.674691.7589210.00012610.2684851gene702174.293591.6108530.00013450.2684851gene7795326.43308-1.6243230.00004070.2684851This is for WT, treated compared with untreated. Note that WT is not mentioned, because it is the reference level. In other words, this is the

19、difference between samples No. 7-9, compared with samples No. 1-3.Here we show the most significant gene.barplot(assay(dds)ix,las=2, main=rownames(dds)ix)The effect of treatment in mutantThis is, by definition, the main effectplusthe interaction term (the extra condition effect in genotype Mutant co

20、mpared to genotype WT).res-results(dds, list(c(condition_Trt_vs_Ctrl,genotypeMU.conditionTrt)ix=which.min(res$padj)# most significantres-resorder(res$padj),# sortkable(res1:5,-(3:4)baseMeanlog2FoldChangepvaluepadjgene510218.690174.7570571.60e-060.0156910gene7367170.692591.4810161.19e-050.0396834gene

21、835127.772273.0336229.80e-060.0396834gene803453.34342-1.8410231.62e-050.0403724gene727292.82351-1.4149676.70e-050.1125808This measures the effect of treatment in mutant. In other words, samples No. 10-12 compared with samples No. 4-6.Here we show the most significant gene, which is downregulated exp

22、ressed in samples 10-12, than samples 4-6 , as expected.barplot(assay(dds)ix,las=2, main=rownames(dds)ix)What is the difference between mutant and wild-type without treatment?As Ctrl is the reference level, we can just retrieve the “genotype_MU_vs_WT”.res=results(dds, contrast=c(genotype,MU,WT)ix=wh

23、ich.min(res$padj)# most significantres-resorder(res$padj),# sortkable(res1:5,-(3:4)baseMeanlog2FoldChangepvaluepadjgene510218.69017-4.7145190.00000200.0195594gene228945.047111.7636150.00003330.1218120gene3388122.85582-1.5293230.00003660.1218120gene91539.032502.1040030.00011330.2374845gene835127.7722

24、7-2.6531820.00011900.2374845In other words, this is the samples No.4-6 compared with No. 1-3. Here we show the most significant gene.barplot(assay(dds)ix,las=2, main=rownames(dds)ix)With treatment, what is the difference between mutant and wild-type?res=results(dds, list(c(genotype_MU_vs_WT,genotype

25、MU.conditionTrt)ix=which.min(res$padj)# most significantres-resorder(res$padj),# sortkable(res1:5,-(3:4)baseMeanlog2FoldChangepvaluepadjgene412750.036771.9250940.00000910.0910878gene387934.67704-2.1332030.00002830.0940387gene479924.11059-2.4593450.00001970.0940387gene544158.67469-1.7447690.00014180.

26、2357640gene5926161.167371.5241630.00013390.2357640This gives us the difference between genotype MU and WT, under condition Trt. In other words, this is the sampless No. 10-12 compared with samples 7-9.Here we show the most significant gene.barplot(assay(dds)ix,las=2, main=rownames(dds)ix)The differe

27、nt response in genotypes (interaction term)Is the effect of treatmentdifferentacross genotypes? This is the interaction term.res=results(dds, name=genotypeMU.conditionTrt)ix=which.min(res$padj)# most significantres-resorder(res$padj),# sortkable(res1:5,-(3:4)baseMeanlog2FoldChangepvaluepadjgene51021

28、8.690177.3957710.00000000.0000341gene544158.67469-3.2976730.00000040.0019104gene803453.34342-2.5640300.00002050.0682558gene885814.686504.7039360.00002970.0742066gene479924.11059-2.9901010.00012340.2463639Here we show the mostsignificant gene.barplot(assay(dds)ix,las=2, main=rownames(dds)ix)The different response in genotypes (interaction term)Is the effect of treatmentdifferentacross genotypes? This is the interaction term.res=results(dds, name=genotypeMU.conditionTrt)ix=which.min(res$padj)# most significan

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1