ImageVerifierCode 换一换
格式:DOCX , 页数:19 ,大小:262.72KB ,
资源ID:368851      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/368851.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(专题175 二项分布与正态分布精讲精析篇原卷版.docx)为本站会员(b****1)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

专题175 二项分布与正态分布精讲精析篇原卷版.docx

1、专题175 二项分布与正态分布精讲精析篇原卷版新高考高中数学核心知识点全透视专题17.5 二项分布与正态分布(精讲精析篇)提纲挈领点点突破热门考点01 独立重复试验的概率n次独立重复试验(1)定义一般地,在相同条件下重复地做n次试验,各次试验的结果相互独立,称为n次独立重复试验(2)公式一般地,在n次独立重复试验中,设事件A发生的次数为X,在每次试验中事件A发生的概率为p,那么在n次独立重复试验中,事件A恰好发生k次的概率为Pn(k)Cpk(1p)nk,(k0,1,2,n)【典例1】(2015全国高考真题(理)投篮测试中,每人投3次,至少投中2次才能通过测试.已知某同学每次投篮投中的概率为0.

2、6,且各次投篮是否投中相互独立,则该同学通过测试的概率为( )A0.648 B0.432 C0.36 D0.312【典例2】(多选题)(2020襄阳市第一中学月考)一袋中有大小相同的4个红球和2个白球,给出下列结论:从中任取3球,恰有一个白球的概率是;从中有放回的取球6次,每次任取一球,恰好有两次白球的概率为;现从中不放回的取球2次,每次任取1球,则在第一次取到红球后,第二次再次取到红球的概率为;从中有放回的取球3次,每次任取一球,则至少有一次取到红球的概率为. 则其中正确命题的序号是( )A B C D【总结提升】1独立重复试验的特点(1)每次试验中,事件发生的概率是相同的. (2)每次试验

3、中的事件是相互独立的,其实质是相互独立事件的特例2.运用独立重复试验的概率公式求概率,首先要分析问题中涉及的试验是否为n次独立重复试验,若不符合条件,则不能应用公式求解;在求n次独立重复试验中事件恰好发生k次的概率时,首先要确定好n和k的值,再准确利用公式求概率3解决这类实际问题往往需把所求的概率的事件分拆为若干个事件,而这每个事件均为独立重复试验;4在解题时,还要注意“正难则反”的思想的运用,即利用对立事件来求其概率热门考点02 二项分布及其应用1.若将事件A发生的次数设为X,发生的概率为P,不发生的概率q1p,那么在n次独立重复试验中,事件A恰好发生k次的概率是P(Xk)Cpkqnk(k0

4、,1,2,n)于是得到X的分布列X01knPCp0qnCp1qn1CpkqnkCpnq0由于表中第二行恰好是二项式展开式(qp)nCp0qnCp1qn1CpkqnkCpnq0各对应项的值,称这样的离散型随机变量X服从参数为n,p的二项分布,记作XB(n,p)【典例3】(2020科尔沁左翼后旗甘旗卡第二高级中学高二期末(理)已知随机变量服从二项分布,则( )A B C D【典例4】为了适当疏导电价矛盾,保障电力供应,支持可再生能源发展,促进节能减排,某省于2018年推出了省内居民阶梯电价的计算标准:以一个年度为计费周期、月度滚动使用,第一阶梯电量:年用电量2 160度以下(含2 160度),执行

5、第一档电价0.565 3元/度;第二阶梯电量:年用电量2 161至4 200度(含4 200度),执行第二档电价0.615 3元/度;第三阶梯电量:年用电量4 200度以上,执行第三档电价0.865 3元/度某市的电力部门从本市的用电户中随机抽取10户,统计其同一年度的用电情况,列表如下表:用户编号12345678910年用电量(度)1 0001 2601 4001 8242 1802 4232 8153 3254 4114 600(1)试计算表中编号为10的用电户本年度应交电费多少元?(2)现要在这10户家庭中任意选取4户,对其用电情况作进一步分析,求取到第二阶梯电量的户数的分布列;(3)以

6、表中抽到的10户作为样本估计全市的居民用电情况,现从全市居民用电户中随机地抽取10户,若抽到k户用电量为第一阶梯的可能性最大,求k的值【规律方法】1.判断随机变量X服从二项分布的条件(XB(n,p)(1)X的取值为0,1,2,n.(2)P(Xk)Cpk(1p)nk(k0,1,2,n,p为试验成功的概率)提醒:在实际应用中,往往出现数量“较大”“很大”“非常大”等字眼,这表明试验可视为独立重复试验,进而判定是否服从二项分布2. 二项分布满足的条件(1)每次试验中,事件发生的概率是相同的(2)各次试验中的事件是相互独立的(3)每次试验只有两种结果:事件要么发生,要么不发生(4)随机变量是这n次独立

7、重复试验中事件发生的次数3.二项展开式的通项与二项分布的概率公式的“巧合”一般地,由n次试验构成,且每次试验相互独立完成,每次试验的结果仅有两种对立的状态,即与,每次试验中.我们将这样的试验称为次独立重复试验,也称为伯努利试验在次独立重复试验中,每次试验事件发生的概率均为,即,.由于试验的独立性,次试验中,事件在某指定的次发生,而在其余次不发生的概率为.而在次试验中,事件恰好发生次的概率为,.它恰好是的二项展开式中的第项4. 牢记且理解事件中常见词语的含义:(1) 、中至少有一个发生的事件为;(2) 、都发生的事件为;(3) 、都不发生的事件为;(4) 、恰有一个发生的事件为;(5) 、至多一

8、个发生的事件为.热门考点03 与二项分布有关的均值与方差二项分布的期望、方差:若,则.若,则【典例5】(2019天津高考真题(理)设甲、乙两位同学上学期间,每天7:30之前到校的概率均为.假定甲、乙两位同学到校情况互不影响,且任一同学每天到校情况相互独立.()用表示甲同学上学期间的三天中7:30之前到校的天数,求随机变量的分布列和数学期望;()设为事件“上学期间的三天中,甲同学在7:30之前到校的天数比乙同学在7:30之前到校的天数恰好多2”,求事件发生的概率.【典例6】(2019河北高二期末(理)互联网正在改变着人们的生活方式,在日常消费中手机支付正逐渐取代现金支付成为人们首选的支付方式.

9、某学生在暑期社会活动中针对人们生活中的支付方式进行了调查研究. 采用调查问卷的方式对100名18岁以上的成年人进行了研究,发现共有60人以手机支付作为自己的首选支付方式,在这60人中,45岁以下的占,在仍以现金作为首选支付方式的人中,45岁及以上的有30人. (1)从以现金作为首选支付方式的40人中,任意选取3人,求这3人至少有1人的年龄低于45岁的概率;(2)某商家为了鼓励人们使用手机支付,做出以下促销活动:凡是用手机支付的消费者,商品一律打八折. 已知某商品原价50元,以上述调查的支付方式的频率作为消费者购买该商品的支付方式的概率,设销售每件商品的消费者的支付方式都是相互独立的,求销售10

10、件该商品的销售额的数学期望.【总结提升】与二项分布有关的期望、方差的求法(1)求随机变量的期望与方差时,可首先分析是否服从二项分布,如果B(n,p),则用公式E()np,D()np(1p)求解,可大大减少计算量(2)有些随机变量虽不服从二项分布,但与之具有线性关系的另一随机变量服从二项分布,这时,可以综合应用E(ab)aE()b以及E()np求出E(ab),同样还可求出D(ab)热门考点04 正态曲线及其性质1正态曲线及其性质(1)正态曲线:函数,(x)e,x(,),其中实数,(0)为参数,我们称,(x)的图象为正态分布密度曲线,简称正态曲线(2)正态曲线的性质:曲线位于x轴上方,与x轴不相交

11、;曲线是单峰的,它关于直线x对称;曲线在x处达到峰值;曲线与x轴之间的面积为1;当一定时,曲线的位置由确定,曲线随着的变化而沿x轴平移,如图甲所示;当一定时,曲线的形状由确定,越大,曲线越“矮胖”,总体分布越分散;越小曲线越“瘦高”总体分布越集中,如图乙所示:甲乙2正态分布一般地,如果对于任何实数a,b(ab),随机变量X满足P(aXb),(x)dx,则称随机变量X服从正态分布(normal distribution)正态分布完全由参数和确定,因此正态分布常记作N(,2)如果随机变量X服从正态分布,则记为XN(,2)3正态总体三个特殊区间内取值的概率值P(X)0.6826;P(2X2)0.95

12、44;P(3X3)0.997443原则通常服从正态分布N(,2)的随机变量X只取(3,3)之间的值【典例7】(2020湖北十堰期末)设某地胡柚(把胡柚近似看成球体)的直径(单位:服从正态分布,则在随机抽取的1000个胡柚中,直径在,内的个数约为附:若,则,A134 B136 C817 D819【典例8】(多选题)(2020辽宁省本溪满族自治县高级中学高二期末)若随机变量,其中,下列等式成立有( )A BC D【规律方法】1.求正态曲线的两个方法(1)图解法:明确顶点坐标即可,横坐标为样本的均值,纵坐标为(2)待定系数法:求出,便可2.正态分布下2类常见的概率计算(1)利用正态分布密度曲线的对称

13、性研究相关概率问题,涉及的知识主要是正态曲线关于直线x对称,曲线与x轴之间的面积为1.(2)利用3原则求概率问题时,要注意把给出的区间或范围与正态变量的,进行对比联系,确定它们属于(,),(2,2),(3,3)中的哪一个3.正态总体在某个区间内取值概率的求解策略(1)充分利用正态曲线对称性和曲线与x轴之间面积为1(2)熟记P(X),P(2X2),P(3X3)的值(3)注意概率值的求解转化:P(Xa)1P(Xa);P(Xa)P(Xa);若b,则P(Xb)特别提醒:正态曲线,并非都关于y轴对称,只有标准正态分布曲线才关于y轴对称热门考点05 正态分布及其应用【典例9】(2020开封模拟)某商场经营的某种包装的大米质量(单位:kg)服从正态分布N(10,2),根据检测结果可知P(9.910.1)0.96,某公司为每位职工购买一袋这种包装的大米作为福利,若该公司有1 000名职工,则分发到的大米质量在9.9 kg以下的职工数大约为()A10 B20C20 D40【典例10】(2020全国高三其他(理)某公司订购了一批树苗,为了检测这批树苗是否合格,从中随机抽测100株树苗的高度,经数据处理得到如图(1)所示的频率分布直方图,其中最高的16株树苗的高度的茎叶图如图(2)所示,以

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1