ImageVerifierCode 换一换
格式:PDF , 页数:15 ,大小:635.73KB ,
资源ID:3213342      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/3213342.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(激光测振原理及应用.pdf)为本站会员(b****3)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

激光测振原理及应用.pdf

1、470 第 17 章 激光测振原理及应用 振动特性的测量和分析是鉴别和确定机器、元部件工作可靠性的重要手段。常用的测振技术是接触式测量。在被测物体上安装加速度传感器,利用加速度传感器的电荷输出信号实现加速度速度位移的相关测量。如果测量质量较小物体的振动,附加的加速度传感器的质量往往会影响被测物体的振动,从而产生测量误差。设计和开发新型的非接触式、高精度、实时性的测振技术一直是工程科学和技术领域中的重要课题和任务。激光全息方法、激光多普勒测振就是新型的空间分辨率很高、非接触式的测量技术。17.1 概述 物体的振动是往往是一个三维的运动过程,测量或确定物体的振动,即求解物体内部和表面上任一几何点随

2、时间的位移函数 D(x,y,z,t)。位移向量通常被分解为两个面内分量和一个离面位移分量。面内振动分量:两个位移分量 u,v 垂直于该测点的表面法线方向。离面振动分量:位移分量 w 平行于该测点的表面法线方向。如图 171 所示。在激光振动分析测量时,所求解的值是三个 位 移 分 量 的 时 间 函 数,),(),(),(tzyxwtzyxvtzyxu。在非接触式测量方法中,各种激光测量方法,因原理不同,可以分别实现物体表面的点测量或物体表面的面(场)测量,并且激光束的入射方向与物体的表面法线方向应满足一定的几何要求。17.2 激光干涉基础 光源 S 处发出的频率为 f、波长为 的激光束一部分

3、投射到记录介质 H(比如全息干板)上,光波的复振幅记为 E1,另一部分经物体 O 表面反射后投射到记录介质 H 上,光波的复振幅记为 E2。如图 172 所示。其中)2cos(111+=ftAE (171))2cos(222+=ftAE (172)式中,A1和 A2分别为光波的振幅。1和2则分别是光波的位相。当 E1和 E2满足相干条件 图 171 物体的振动及坐标系 u v w y z x PDF created with pdfFactory Pro trial version 471 时,其光波的合成复振幅为 E)2cos()2cos(222221+=+=ftAftAEEE (173)光

4、强分布为 I)2cos()2cos(2)2(cos)2(cos2121222212212+=ftftAAftAftAEI)cos()4cos()2(cos)2(cos2121212122221221+=AAftAAftAftA (174)式(174)的四项中,前三项均为高频分量。只有第四项为低频分量,且与物体表面的状态有关。第四项的含义是2所代表的物体表面与1所代表的参考面之间的相对变化量。在激光位移测量方法(全息干涉、激光散斑、云纹干涉、激光多普勒测振等)中,都是通过处理和分析物体表面与参考面(物体表面)在变形前后的位相变化、光强变化等,从而实现高精度的振动位移测量。17.3 时间平均全息方

5、法 激光测振以其非接触测量、精度高等优点,已在振动测量领域得到广泛应用。在全息干涉计量学中,时间平均全息方法首先在 1965 年由 Powell 提出。可以测量和分析物体的微幅振动。对于在某一稳定频率下作简谐振动的物体,用连续激光照射,并在比振动周期长得多的时间内在全息干版上曝光,可将物体表面所反射的光与未作位相调制的参考光相叠加,将两束光的干涉图记录在全息干版上。其再现像由反映节线和等振幅线组成的干涉条纹来表示振幅分布。这就是时间平均全息方法的测振原理。其时间平均全息图的重现像的光强度按零阶贝塞尔函数的平方分布。)(20KJI=(175)式中,J0为零阶贝塞尔函数,)cos)(cos,(22

6、1+=yxV,其中 V(x,y)为物体上某点的位移,1为振动方向和照明方向的夹角,2为振动方向和观察方向的夹角。如图 173所示。对于作简谐振动的物体,由于振动方向已知,所以在实验光路中将入射光和接收光往 图 172 激光干涉原理 S O H E1 E2 PDF created with pdfFactory Pro trial version 472 往设置成 1=2=0,则(75)式变为),(4(20yxVKJI=(176)当 V(x,y)=0,I=Imax 时,对应的是亮条纹。在该条纹的位置上是物体振动的节点。当 V(x,y)=0.19,0.43,0.68.,I=0 时;也就是干涉暗条纹

7、。在该条纹的位置上是物体振动的最大振幅。干涉图中其余点处的振幅值也可按照(176)式所示的规律相应地确定下来。在传统的全息方法中,将振动信息记录在全息干板上,进而做分析和处理。从式(175)式和(176)式可知:当 =0 时,I 值取极大值,即振幅为零的地方光强最亮,也就是振动节线处最亮。随着振幅变大,光强衰减开始很快,后来变得缓慢,同时,条纹的对比度也变差。时间平均法的实验过程简单,节线清晰,因此在振动分析中广泛使用。图 173 激光全息测振 图 174 第一类零阶贝塞尔函数的平方分布 (a)Mode I (b)Mode II (c)Mode I+Mode II 图 175 圆板的振动模态

8、V(x,y)全息干板 2 激光束 物体 1 PDF created with pdfFactory Pro trial version 473 本节中介绍的两个应用实例如下,图 175 表示的是周边固支圆板 I 型、II 型和 I II 混合型振型。其中的亮条纹为节线位置。图 176 所示的是吉它的振型。为了克服时间平均全息法的缺点,激光全息频闪方法采用与振动物体频率同步的激光频闪照明方法,在全息记录过程中,只记录物体的两个状态(振幅的极大值和极小值)。再现时,使这两个状态干涉产生相对位移分布,获得按余弦平方分布的等振幅线干涉条纹。该干涉条纹不随振幅增加而衰减,缺点是振动节线不明显。该方法对非

9、正弦振动也可以进行测量。随着激光技术的飞速发展,多脉冲激光器发出的脉冲激光的光脉冲时间极短,约为几十纳秒,可以用来做全息振动测量的光源。图 176 吉它的振动模态 图 177 用时间平均法 ESPI 测量传统乐器 Veena 振动的图像 PDF created with pdfFactory Pro trial version 474 电子散斑干涉技术(ESPI-electronic speckle pattern interferometry)测振在图像记录和自动化处理方面具有明显的优势。ESPI 测量振动时采用的最方便的方法也是时间平均法,但时间平均法得到的由第一类零阶贝塞尔函数表征的散斑

10、干涉条纹,由于贝塞尔函数随自变量的增加迅速衰减的特征和散斑噪音的存在,振动条纹的质量明显低于静态变形的余弦条纹。数字散斑(DSPI)测振仪存在抗干扰能力差,测量质量不高,难以小型化,难以用于复杂工作环境等缺点。图 177 所示的是用时间平均法 ESPI 测量传统乐器 Veena 振动的图像。17.4 激光多普勒效应 当波源向着接收器移动时,波源和接收器之间传递的波将发生变化,波长缩短,频率升高;反之,当波源背着接收器移动时,波源和接收器之间传递的波的波长将变长,频率会降低;这一现象是奥地利的物理学家 J.C.Doppler 于 1842 年首先发现的,称为多普勒效应。发生多普勒效应的波可以是声

11、波,也可以是电磁波。利用激光多普勒效应,不仅能测量固体的振动速度,而且也能测量流体(液体和气体)的流动速度。17.4.1 激光多普勒测振原理 如图 178 所示,S 为光源,光的频率为 f,光速为 c。O 为光波接收器件(如雪崩式光电二极管),P 为速度为 V 的运动物体,且能反射光波;当波源和接收器保持相对静止时,假设 n 是沿从光源到接收者光路上的波数或周期数,由图 178 可知,在无限小的时间间隔t 中,假定 P 移动到 P 的距离为 Vt。在光程中周期数将减少为 +=NPPNn (177)其中 PN 和 PN分别是向 SP 和 PO 作的垂线,PP为无限小,和 是散射前后的波长。(17

12、7)可表示为 +=21coscostVtVn (178)由于cff=,并且 dtdnfffD=(179)则 cfVcVffD21coscos+=(1710)在一般情况下,不需要区分 和,这样就得到一级近似的多普勒频移)cos(cos21+=cVffD (1711)PDF created with pdfFactory Pro trial version 475 接收器接收到的光波频率为 f+fD。频率偏移量为fD,也称多普勒频率,通常又可写成 2cos2cos22121+=cVffD (1712)对于光波沿反向散射时,即光源和光波接收器件为一体时(如图 179 所示),S=O,1=-2。因此:

13、cos2cos2VcVffD=(1713)为激光波长,当=0 时,VcVffD22=(1714)由此可知,激光多普勒测振原理就是基于测量从物体表面微小区域反射回的相干激光光波的多普勒频率fD,进而确定该测点的振动速度 V。17.4.2 激光三维测振原理 工程中的许多结构和部件的振动是三维的。即物体表面某一点的振动(速度)可被分解成两个面内分量(Vx,Vy)和一个离面分量 Vz。当进行三维激光振动测量时,需要使用三束激光照射被测点。如图 1710 所示。在光路布置中,光束 ZZ 沿 Z 轴方向,用于测量 Vz,从而可得 sincosxzzxVVV+=(1715)sincosyzzyVVV+=(1

14、716)由(1715)式、(1716)式解得速度分量为 sincoszzxxVVV=(1717)图 178 散射多普勒频移 图 179 激光多普勒(Doppler)效应 N S f f+fD P 1 2 N S f V f+fD P 1=2 V O P PDF created with pdfFactory Pro trial version 476 sincoszzyyVVV=(1718)由多普勒频移测量速度的最直接的方法是利用高分辨率的光谱仪分析来自振动物体的散射光。由于物体实际的振动速度比光速小得多,例如,当波长为 632810-10米/秒、振动物体的速度为 10 米/秒时,可获得 He

15、-Ne 激光的多普勒频移的最大值,按(1714)计算,可得MHz6.31=Df,而激光本身的频率 f 很高(约为 4.74 1014 Hz),即fD/f=6.6710-8。因此,直接测量多普勒频率fD是不可能的。而是当多普勒频移足够大时,可以借助于高分辨率的法布里-珀罗干涉仪(Fabry-Perot)进行测量。在一般情况下,大多数物体的振动速度所引起的多普勒频移在几十千赫几十兆赫,超出了光谱仪的分辨率。这时需要借助于光学差拍及参考光技术来测量。17.5 激光多普勒光学信息处理 将物体表面的反射光(频率为 f+fD)。和参考光(频率为 f)相混合(相干),利用光探测器件接收相干光强,其拍频率等于

16、fD。常用的光学干涉装置为迈克尔逊(Michelson)干涉仪,如图 1711 所示。激光束经过分光镜 BS 后被分成测量光束和参考光束,分光镜 BS 与参考平晶 M 和物体O的距离分别记为 XR和XM。相对应的光学位相分别为R=2kXR,M=2kXM。式中k=2/.。(t)=R-M。参照 17.2 中的分析,光探测器接收到的是与时间相干的光强信息。)2cos(2)(+=tfRIIKRIItIDMRMR (1719)图 1710 激光三维测振 X-axis Y-axis 光束 ZX 光束 ZY 光束 ZZ V Z-axis PDF created with pdfFactory Pro trial version 477 IR和 IM 分别为参考光束和测量光束的光强,K 为合成有效系数,R 为表面反射系数。=4L/,L 为物体的振动位移,如果L 连续变化,光强 I(t)则呈周期性。L 每变化/2,则相应地改变 2。的变化率正比于物体表面的振动速度。(1719)式中包含了一个正比于总光强的直流项和一个正比于振幅 A1A2或MRII的差拍频率。由于接收器得到的信号具有正弦(余弦)特征,并不

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1