ImageVerifierCode 换一换
格式:DOCX , 页数:21 ,大小:22.58KB ,
资源ID:3131120      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/3131120.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(工科物理大作业13波动.docx)为本站会员(b****4)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

工科物理大作业13波动.docx

1、工科物理大作业13波动工科物理大作业13-波动 13 波动 13 班号 学号 姓名 成绩 一、选择题 (在下列各题中,均给出了4个5个答案,其中有的只有1个是正确答案,有的则有几个是正确答案,请把正确答案的英文字母序号填在题后的括号内) 1. 在下列关于机械波的表述中,不正确的是: A. 机械波实际上就是在波的传播方向上,介质中各质元的集体受迫振动; B. 在波的传播方向上,相位差为2 的两质元之间的距离称为波长; C. 振动状态在介质中传播时,波线上各质元均可视为新的子波波源; D. 波的振幅、频率、相位与波源相同; E. 波线上离波源越远的质元,相位越落后。 (D ) 知识点 机械波的概念

2、。 分析与题解平面简谐波在弹性介质中传播,介质中各质元都做受迫振动,各质元均可视为新的子波波源,因此,各质元的振幅、频率与波源是相同的,但各质元的相位是沿传播方向逐点落后的。 2. 平面简谐波波函数的一般表达式为y 的是: A x =A cos(t ) +,则下列说法中不正确 u x 表示波线上任一质元落后于原点处质元的相位,或者说是波线上相距为x 的u 两质元的相位差; B x 表示波从x = 0 传到 x 处所需时间; u x x C (-) 中的负号表示相位落后;(+) 中的正号表示相位超前; u u D y 是任一时刻波线上任一质元的振动速度v ,它并不等于波速u ; t y 表示波速

3、u ,它与介质的性质有关。 (E ) t E 知识点 波动方程中各物理量的意义。 分析与题解 y y 表示波动某一质元的振动速度v ,它并不等于波速u 。一般来说是时t t 间的函数并且与质元位置x 有关,而波速u 只与介质的性质有关。 3在下列关于波的能量的表述中,正确的是: A 波的能量E =E k +E p = 12 kA ; 2 ; 2 B 机械波在介质中传播时,任一质元的E k 和E P 均随时间t 变化,但相位相差 C 由于E k 和E P 同时为零,又同时达到最大值,表明能量守恒定律在波动中不成立; D E k 和E P 同相位,表明波的传播是能量传播的过程。 (D ) 知识点

4、波的能量特征。 分析与题解 波在介质中传播时,各质元的动能和势能都随时间变化,且两者同相位,其总能量随时间变化,说明能量在传播。 能量守恒定律是自然界普遍适用的物理规律,波动中各质元的机械能不守恒,是因为前后质元作用给该质元的弹性力要做功,这也说明了波的传播是能量传播的过程。 4. 一列平面余弦波,在t = 0 时波动曲线如图13-1(a)所示,则P 点和Q 点的振动初相位分别为: A - , ; B ,-; 2222 3 C 0, 0; D , 。 (A ) 22 图13-1(a) 图13-1(b) 知识点 波线上任一点振动方向的判断。 分析与题解 依平面余弦波行波的特性,t +t 时刻的波

5、形如图13-1(b)所示。可知t = 0时刻,P 点向y 轴正方向运动,且y 0=0,则P 点此时振动的初相位P 0=-点相距半个波长,则Q 点与P 点必反向,则Q 点此时振动的初相位Q 0 5. 一列平面余弦波t 时刻的波形如图13-2所示,则该时刻能量为最大值的介质质元的位置是:(B ) A a , c , e ; B b , d , f; C a , e ; D c 。 知识点 平面简谐波能量特征,最大能量位置判断。 分析与题解 波动中质元的动能、势能与总能量同相变化,且在平衡位置处动能、势能与总能量最大,在位移最大处动能、势能与总能量最小。 由题意得:b 、d 、f 在平衡位置处,且向

6、x 轴正或负方向运动;a 、c 、e 处在位移最大处。因此,则该时刻能量为最大值的介质质元的位置是b 、d 、f 。 6. 一频率为500Hz 的平面简谐波,波速为360m / s ,则同一波线上相位差为距离为: A 0.24m ; B 0.48m ; C 0.36m ; D 0.12m 。 (D ) 知识点 波线上两点间相位差公式= ;Q 点与P 2 =-=。 22 图13-2 两点间3 2 d 。 分析与题解 已知=500Hz ,u =360m/s,则波长为 = u = 360 =0. 72m 500 2 由波线上相隔距离为d 的两点间相位差公式= d ,得 d = 2 = 0. 72 =

7、0. 12m 23 7. 已知一波动在t = 0.5s的波形如图13-3(a)所示,波速为10m / s,若此时P 点处介质质元的振动动能在逐渐增大,则波动方程为: x )cm 10x B y =10cos(t +) +cm; 10x C y =10cos(t -)cm; 10x D y =10cos(t -) +cm。 (B ) 10 A y =10cos(t + 图13-3(a) 图13-3(b) 知识点 由波形曲线求波动方程。 分析与题解 已知u =10m/s,由图13-3(a)的波形曲线知 A =10cm , =20m ,=2=2 u =2 10 =rad/s 20 且此时P 点质元的

8、动能在增大,应向平衡位置靠近,则下一时刻的波形曲线如图13-3(b)中虚线所示。 由行波特性知此波沿x 轴负方向传播,进而得出当t = 0.5s时坐标原点(x = 0)的质元在平衡位置且向y 轴的正方向运动。 即 t +=所以 = 3 2 33-t =-0.5= 22 x 波动方程为 y =10cos(t +) +c m 10 8. 在下列关于波的干涉的表述中,正确的是: A 两列波在空间相遇,叠加的结果形成干涉; B 两列相干波干涉的结果,使介质中各质元不是“加强”,就是“减弱”(即极大或 极小); C 干涉加强意味着合振幅A 有极大值,干涉减弱意味着合振幅A 有极小值; D 干涉加强点意味

9、着该质元的y 不随时间变化,始终处于极大值位置; E 两列相干波形成干涉,某时刻介质中P 点处的质元距平衡位置为y ,且(A min 分析与题解 要形成干涉必须是满足相干条件的两列波叠加而成,而不满足相干条件的两列波叠加后不能形成干涉。 干涉加强或减弱是指合振幅取极大值或极小值的情况,而干涉中还有合振幅介于两者之间(即不是“加强”也不是“减弱”)的情况存在。 干涉加强点的振幅为极大值A =A 1+A 2,但该点仍在做简谐振动,其位移随时间在-A 与+A 之间不变化。 由y A min 只能说明P 点不是减弱点,但由y 9. 一列火车驶过火车站时,站台上的观察者测得火车汽笛声的频率由1200Hz

10、 变为1000Hz ,空气中的声速为330m / s,则火车的速度为: A 30m / s; B 55m / s; C 66m / s; D 90m / s。 (A ) 知识点 多普勒效应。 分析与题解 已知空气中的声速u =330m/s,设火车汽笛声源的频率为,火车的速度为v s ,则当火车驶向站台时,观察者测得火车汽笛声的声波频率为 1= u 330 =1200 (1) u -v s 330-v s 则当火车驶离站台时,观察者测得火车汽笛声的声波频率为 =2 u 330 =1000 (2) u +v s 330+v s 联立式(1)和式(2),可得火车的速度为 v s =30m/s 10.

11、 在下列关于电磁波的表述中,正确的是: A 电磁波在传播过程中,E 、H 的振动方向相互垂直,频率相同; B 振幅满足 E =H 的关系; 1 =c ; C 电磁波在真空中的波速u = 00 D 电磁波是纵波。 (A 、B 、C ) 知识点 电磁波的性质。 分析与题解 电磁波是横波。 二、填空题 1. 一平面简谐波的波动方程为y =0. 2cos 2 x t -m ,则这列波的角频率为0. 020. 05 ,波速u =,其沿方向传播。 = 100r a d / s 知识点 根据波动方程求描述波动的特征量。 分析与题解 波动方程的标准式为 t x x y =A cos (t -) +=A cos

12、 2 -+ u T 经比较,可得出:A =0. 2m ,T =0. 02s ,=0. 05m ,=0。 22 =100rad/s T 0. 020. 05 =2. 5m/s 波速为 u = T 0. 02x ) 项,可判断该平面简谐波是沿x 轴正方向传播的。 由波动方程中的(-0. 05 则角频率为 = 2. 波源位于x = -1m处,其振动方程为y =0. 5cos 2t + m ,此波源产生的波无吸3 收地分别向x 轴正、负方向传播,波速u = 2 m/s,则向x 轴正向传播的波动方程为y 1 = 2 0. 5cos 2t -x -m ,则向x 轴负向传播的波动方程为y 2 = 34 0.

13、 5cos 2t +x +m 。 3 知识点 沿x 轴正、负方向传播的波动方程的建立。 分析与题解 沿x 轴正方向传播的波动方程为 y =A cos (t -) +1 x u 将x =-1m 代入上式并与给定的该点的振动方程为y =0. 5cos 2t + m 相比较,有 3 且=2rad/s u 3 x 2(-1) 2 =+=-即 1=+ 3u 323 - +1= 则沿x 轴正方向传播的波动方程为 y =0. 05cos 2(t -) - x x 2 2m 3 同理,沿x 轴负方向传播的波动方程为 y =A cos (t +) +2 则有 2= x u x 2(-1) 4-=-= 3u 32

14、3 则沿x 轴负方向传播的波动方程为 y =0. 05cos 2(t + x 4) +m 23 3. 一沿x 轴正方向传播的平面简谐波,波速为u = 10 m/s,频率为 = 5Hz ,振幅A = 0.02m 。t = 0时,位于坐标原点处的质元的位移为y 0 = 0.01m,速度动方程为y = 0. 02cos 10t -x -= 0. 1 。 知识点 波动方程的建立,波线上两质元间相位差公式=分析与题解 =2=10 rad/s,= d y 0,则此列波的波d t 位于x 1 = 4m和x 2 = 4.1m处两质元的相位差 m ;3 2 d 。 u =2m 由y 0=0. 01m 且A =0. 02m ,有 y 0=

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1