ImageVerifierCode 换一换
格式:DOCX , 页数:19 ,大小:562.51KB ,
资源ID:30575991      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/30575991.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(物质结构与性质知识点总结.docx)为本站会员(b****8)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

物质结构与性质知识点总结.docx

1、物质结构与性质知识点总结一.原子结构与性质.一.认识原子核外电子运动状态,了解电子云、电子层(能层)、原子轨道(能级)的含义.1.电子云:用小黑点的疏密来描述电子在原子核外空间出现的机会大小所得的图形叫电子云图.离核越近,电子出现的机会大,电子云密度越大;离核越远,电子出现的机会小,电子云密度越小.电子层(能层):根据电子的能量差异和主要运动区域的不同,核外电子分别处于不同的电子层.原子由里向外对应的电子层符号分别为K、L、M、N、O、P、Q.原子轨道(能级即亚层):处于同一电子层的原子核外电子,也可以在不同类型的原子轨道上运动,分别用s、p、d、f表示不同形状的轨道,s轨道呈球形、p轨道呈纺

2、锤形,d轨道和f轨道较复杂.各轨道的伸展方向个数依次为1、3、5、7.2.(构造原理)了解多电子原子中核外电子分层排布遵循的原理,能用电子排布式表示136号元素原子核外电子的排布.(1).原子核外电子的运动特征可以用电子层、原子轨道(亚层)和自旋方向来进行描述.在含有多个核外电子的原子中,不存在运动状态完全相同的两个电子.(2).原子核外电子排布原理.能量最低原理:电子先占据能量低的轨道,再依次进入能量高的轨道.泡利不相容原理:每个轨道最多容纳两个自旋状态不同的电子.洪特规则:在能量相同的轨道上排布时,电子尽可能分占不同的轨道,且自旋状态相同.洪特规则的特例:在等价轨道的全充满(p6、d10、

3、f14)、半充满(p3、d5、f7)、全空时(p0、d0、f0)的状态,具有较低的能量和较大的稳定性.如24Cr Ar3d54s1、29Cu Ar3d104s1.(3).掌握能级交错图和1-36号元素的核外电子排布式.根据构造原理,基态原子核外电子的排布遵循图箭头所示的顺序。根据构造原理,可以将各能级按能量的差异分成能级组如图所示,由下而上表示七个能级组,其能量依次升高;在同一能级组内,从左到右能量依次升高。基态原子核外电子的排布按能量由低到高的顺序依次排布。3.元素电离能和元素电负性第一电离能:气态电中性基态原子失去1个电子,转化为气态基态正离子所需要的能量叫做第一电离能。常用符号I1表示,

4、单位为kJ/mol。 (1).原子核外电子排布的周期性.随着原子序数的增加,元素原子的外围电子排布呈现周期性的变化:每隔一定数目的元素,元素原子的外围电子排布重复出现从ns1到ns2np6的周期性变化.(2).元素第一电离能的周期性变化.随着原子序数的递增,元素的第一电离能呈周期性变化:同周期从左到右,第一电离能有逐渐增大的趋势,稀有气体的第一电离能最大,碱金属的第一电离能最小;同主族从上到下,第一电离能有逐渐减小的趋势.说明:同周期元素,从左往右第一电离能呈增大趋势。电子亚层结构为全满、半满时较相邻元素要大即第 A 族、第 A 族元素的第一电离能分别大于同周期相邻元素。Be、N、Mg、P.元

5、素第一电离能的运用:a.电离能是原子核外电子分层排布的实验验证. b.用来比较元素的金属性的强弱. I1越小,金属性越强,表征原子失电子能力强弱.(3).元素电负性的周期性变化. 元素的电负性:元素的原子在分子中吸引电子对的能力叫做该元素的电负性。随着原子序数的递增,元素的电负性呈周期性变化:同周期从左到右,主族元素电负性逐渐增大;同一主族从上到下,元素电负性呈现减小的趋势.电负性的运用:a.确定元素类型(一般1.8,非金属元素;1.7,离子键;碳化硅晶体硅.7.了解简单配合物的成键情况(配合物的空间构型和中心原子的杂化类型不作要求).概念表示条件共用电子对由一个原子单方向提供给另一原子共用所

6、形成的共价键。 A B电子对给予体 电子对接受体 其中一个原子必须提供孤对电子,另一原子必须能接受孤对电子的轨道。 (1).配位键:一个原子提供一对电子与另一个接受电子的原子形成的共价键.即成键的两个原子一方提供孤对电子,一方提供空轨道而形成的共价键.(2).配合物:由提供孤电子对的配位体与接受孤电子对的中心原子(或离子)以配位键形成的化合物称配合物,又称络合物.形成条件:a.中心原子(或离子)必须存在空轨道. b.配位体具有提供孤电子对的原子.配合物的组成.配合物的性质:配合物具有一定的稳定性.配合物中配位键越强,配合物越稳定.当作为中心原子的金属离子相同时,配合物的稳定性与配体的性质有关.

7、三.分子间作用力与物质的性质.1.知道分子间作用力的含义,了解化学键和分子间作用力的区别.分子间作用力:把分子聚集在一起的作用力.分子间作用力是一种静电作用,比化学键弱得多,包括范德华力和氢键.范德华力一般没有饱和性和方向性,而氢键则有饱和性和方向性.2.知道分子晶体的含义,了解分子间作用力的大小对物质某些物理性质的影响.(1).分子晶体:分子间以分子间作用力(范德华力、氢键)相结合的晶体.典型的有冰、干冰.(2).分子间作用力强弱和分子晶体熔沸点大小的判断:组成和结构相似的物质,相对分子质量越大,分子间作用力越大,克服分子间引力使物质熔化和气化就需要更多的能量,熔、沸点越高.但存在氢键时分子

8、晶体的熔沸点往往反常地高.例33.在常温常压下呈气态的化合物、降温使其固化得到的晶体属于A.分子晶体 B.原子晶体 C.离子晶体D.何种晶体无法判断3.了解氢键的存在对物质性质的影响(对氢键相对强弱的比较不作要求).NH3、H2O、HF中由于存在氢键,使得它们的沸点比同族其它元素氢化物的沸点反常地高.影响物质的性质方面:增大溶沸点,增大溶解性 表示方法:XHY(N O F) 一般都是氢化物中存在4.了解分子晶体与原子晶体、离子晶体、金属晶体的结构微粒、微粒间作用力的区别.晶体类型原子晶体分子晶体金属晶体离子晶体粒子原子分子金属阳离子、自由电子阴、阳离子粒子间作用(力)共价键分子间作用力复杂的静

9、电作用离子键熔沸点很高很低一般较高,少部分低较高硬度很硬一般较软一般较硬,少部分软较硬溶解性难溶解相似相溶难溶(Na等与水反应)易溶于极性溶剂导电情况不导电(除硅)一般不导电良导体固体不导电,熔化或溶于水后导电实例金刚石、水晶、碳化硅等干冰、冰、纯硫酸、H2(S)Na、Mg、Al等NaCl、CaCO3NaOH等四、几种比较1、离子键、共价键和金属键的比较化学键类型离子键共价键金属键概念阴、阳离子间通过静电作用所形成的化学键原子间通过共用电子对所形成的化学键金属阳离子与自由电子通过相互作用而形成的化学键成键微粒阴阳离子原子金属阳离子和自由电子成键性质静电作用共用电子对电性作用形成条件活泼金属与活

10、泼的非金属元素非金属与非金属元素金属内部实例NaCl、MgOHCl、H2SO4Fe、Mg2、非极性键和极性键的比较非极性键极性键概念同种元素原子形成的共价键不同种元素原子形成的共价键,共用电子对发生偏移原子吸引电子能力相同不同共用电子对不偏向任何一方偏向吸引电子能力强的原子成键原子电性电中性显电性形成条件由同种非金属元素组成由不同种非金属元素组成3物质溶沸点的比较(重点)(1)不同类晶体:一般情况下,原子晶体离子晶体分子晶体(2)同种类型晶体:构成晶体质点间的作用大,则熔沸点高,反之则小。离子晶体:离子所带的电荷数越高,离子半径越小,则其熔沸点就越高。分子晶体:对于同类分子晶体,式量越大,则熔

11、沸点越高。原子晶体:键长越小、键能越大,则熔沸点越高。(3)常温常压下状态熔点:固态物质液态物质沸点:液态物质气态物质知识建构: 本章以学习几种典型的晶体模型为主线,通过引导学生认识宏观物质的主要聚集状态及其性质特征,使他们从孤立的微观的认识构成物质的微粒发展到联系地、宏观的认识物质的聚集状态和性质,从而建立系统、完整的物质结构观。专题归纳:一、四种晶体的比较晶体类型离子晶体分子晶体原子晶体金属晶体结构构成晶体的粒子阴阳离子分子原子金属离子、自由电子微粒间作用力离子键分子间作用力共价键金属键性质熔沸点熔沸点高熔沸点低熔沸点很高熔沸点高或低硬度硬而脆硬度小质地硬硬度大或小溶解性易溶于极性溶剂水溶

12、液能够导电不溶于大多数溶剂导电性晶体不导电不导电不导电导电熔融液导电不导电不导电导电溶液导电可能导电不溶于水不溶于水熔化时克服的作用力离子键共价键范德华力金属键实例食盐晶体氨、氯化氢金刚石镁、铝二、重要经验规律及特殊规律(1)物质中有阴离子必有阳离子,但有阳离子不一定有阴离子(如合金及金属)。(2)共价化合物中一定无离子键,离子化合物中不一定无共价键。(3)离子、原子晶体中一定无分子存在,亦无范德华力,只有分子晶体中存在范德华力,唯一无共价键的是稀有气体晶体。(4)非金属元素间一般不能形成离子化合物,但铵盐却是离子化合物。(5)构成分子的稳定性与范德华力无关,由共价键强弱决定。分子的熔沸点才与

13、范德华力有关,且随着分子间作用力增强而增高。(6)原子晶体的熔沸点不一定比金属高,金属的熔沸点也不一定比分子晶体高。三、晶体类型的判断方法 掌握晶体类型对推断物质的结构、性质、用途等意义重大,对晶体类型的判断常从以下几个方面进行。1. 依据物质的分类判断金属氧化物(如K2O、Na2O2等)、强碱(如NaOH、KOH等)和绝大多数的盐类是离子晶体。大多数非金属单质(除金刚石、石墨、晶体硅、晶体硼外)、气态氢化物、非金属氧化物(除SiO2外)、酸、绝大多数有机物(除有机盐外)都是分子晶体。常见的原子晶体单质有金刚石、晶体硅、晶体硼等;常见的原子晶体化合物有碳化硅、二氧化硅等。金属单质(除汞外)与合

14、金是金属晶体。2. 依据组成晶体的晶格质点和质点间的作用判断离子晶体的晶格质点是阴、阳离子,质点间的作用是离子键;原子晶体的晶格质点是原子,质点间的作用是共价键;分子晶体的晶格质点是分子,质点间的作用为分子间作用力;金属晶体的晶格质点是金属离子和自由电子,质点间的作用是金属键。3. 依据晶体的熔点判断离子晶体的熔点较高,常在数XX至一千余度;原子晶体熔点高,常在一千度至几千度;分子晶体熔点低,常在数XX以下至很低温度;金属晶体多数熔点高,但也有相当低的。4. 依据导电性判断离子晶体水溶液及熔化时能导电;原子晶体一般为非导体,但有些能导电,如晶体硅;分子晶体为非导体,而分子晶体中的电解质(如酸和

15、部分非金属气态氢化物)溶于水,使分子内的化学键断裂形成自由离子也能导电;金属晶体是电的良导体。5. 依据硬度和机械性能判断离子晶体硬度较大或略硬而脆;原子晶体硬度大;分子晶体硬度小且较脆;金属晶体多数硬度大,但也有较低的,且具有延展性。四、晶体熔沸点高低比较的规律1.相同条件不同状态物质的比较规律在相同条件下,不同状态的物质的熔、沸点的高低是不同的,一般有:固体液体气体。例如:NaBr(固)Br2HBr(气)。2.不同类型晶体的比较规律一般来说,不同类型晶体的熔、沸点的高低顺序为:原子晶体离子晶体分子晶体,而金属晶体的熔、沸点有高有低。这是由于不同类型晶体的微粒间作用不同,其熔、沸点也不相同。

16、原子晶体间靠共价键结合,一般熔、沸点最高;离子晶体阴、阳离子间靠离子键结合,一般熔、沸点较高;分子晶体分子间靠范德 华力结合,一般熔、沸点较低;金属晶体中金属键的键能有大有小,因而金属晶体熔沸点有高有低。 例如:金刚石食盐干冰3.同种类型晶体的比较规律(1)原子晶体:熔、沸点的高低,取决于共价键的键长和键能,键长越短,键能越大,熔沸点越高。例如:晶体硅、金刚石和碳化硅三种晶体中,因键长CCCSi碳化硅晶体硅。(2)离子晶体:熔、沸点的高低,取决于离子键的强弱。一般来说,离子半径越小,离子所带电荷越多,离子键就越强,熔、沸点就越高。例如:MgOCaO,NaFNaClNaBrNaI。(3)分子晶体

17、:熔、沸点的高低,取决于分子间作用力的大小。一般来说,组成和结构相似的物质,其分子量越大,分子间作用力越强,熔沸点就越高。(但这不包括具有氢键的分子晶体其熔沸点出现反常得高的现象,如H2O、HF等)。例如:F2Cl2Br2;CCl4CBr4N2,CH3OHCH3CH3在高级脂肪酸形成的油脂中,不饱和程度越大,熔、沸点越低。如:C17H35COOHC17H33COOH硬脂酸 油酸金属晶体:熔、沸点的高低,取决于金属键的强弱。一般来说,金属离子半径越小,离子所带电荷越多,其金属键越强,金属熔沸点就越高。例如:NaMgNaK。五、单质、氧化物晶体类型的变化(以第三周期为例)单质NaMgAlSiPS8

18、Cl2Ar熔点97.8651660141044112.8-101-189.2沸点989.8110724672355280444.6-34.6-185.7晶型金属晶体原子晶体分子晶体氧化物Na2OMgOAl2O3 SiO2 P2O5 SO3Cl2O7熔点9202820202717002416.9-91.5晶型离子晶体原子晶体分子晶体(1).金属键:金属离子和自由电子之间强烈的相互作用.请运用自由电子理论解释金属晶体的导电性、导热性和延展性.晶体中的微粒导电性导热性延展性金属离子和自由电子自由电子在外加电场的作用下发生定向移动自由电子与金属离子碰撞传递热量晶体中各原子层相对滑动仍保持相互作用(2)

19、.金属晶体:通过金属键作用形成的晶体.金属键的强弱和金属晶体熔沸点的变化规律:阳离子所带电荷越多、半径越小,金属键越强,熔沸点越高.如熔点:NaMgNaKRbCs金属键的强弱可以用金属的原子化热来衡量.钠、碘、金刚石、干冰、氯化钠晶体的晶胞图键型键能(kJ/mol)键长(pm)分子键角物质熔点()沸点()HC413109109.5甲烷-183.7-128.0HN393101107 氨-77.7-33.3HO46396104.5 水0.0100.0表示方法:XHY(N O F) 一般都是氢化物中存在右图为冰晶体的结构模型,大球代表O原子,小球代表H原子.冰晶体中每个水分子与另外四个水分子形成四面体正硼酸(H3BO3)是一种片层状结构白色晶体,层内的H3BO3分子通过氢键相连(如下图)D.含1molH3BO3的晶体中有3mol氢键4.了解分子晶体与原子晶体、离子晶体、金属晶体晶体熔点由低到高:CF4CCl4CBr4碳化硅晶体硅 晶格能由大到小: NaF NaCl NaBrNaI在晶体中只要有阴离子就一定有阳离子

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1