ImageVerifierCode 换一换
格式:DOCX , 页数:19 ,大小:868.13KB ,
资源ID:30523039      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/30523039.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(复旦大学材料物理第1课.docx)为本站会员(b****8)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

复旦大学材料物理第1课.docx

1、复旦大学材料物理第1课教科书:材料物理基础 宗祥福 等 著参考书:材料科学导论 冯端 等 著 固体物理学 顾秉鳞 著 固体物理学 方俊鑫 等 著 固体物理基础 马本坤 等 著 固体物理导论 基特尔 著第一课导言:材料物理的内容与课程范围材料对人类社会意义:石器时代;(陶器时代?);铜器时代;铁器时代;硅时代?;纳米材料时代?材料与物质的关系:日常生活中人们时常将材料与物质联系在一起许多物质都是我们需要研究的材料物质的范围更宽:气态、液态、固态、等离子态、特殊天体(白矮星、中子星、黑洞)材料科学研究的对象:固态材料材料的分类之一:基于材料构成-金属、陶瓷(无机非金属材料)、高分子、复合材料材料的

2、分类之二:基于功能-结构材料(强调力学性质)、功能材料(强调各种非力学功能,如光、电、磁等)材料分类之三:基于材料的形态-单晶、多晶、准晶、非晶(玻璃态)我们的材料物理课的研究主要对象:晶态(单晶、多晶)功能材料,其主要的出发点是固体物理学 研究的核心:材料的组成结构性质功能应用。在理解物理本质的基础上,制作、发明性能更为优越的材料。材料物理的一个基本思路:大部分固体材料的特性都取决于其微结构,取决于原子的排列及固体在一维、二维和三维空间上的尺寸大小。通过控制、改变材料的结构及各向维度等参数,就可能改变固体材料的特性。典型实例:碳:非晶碳碳黑,用于墨汁;石墨结构铅笔、石墨电极、石墨坩埚;金刚石

3、结构金刚石装饰品、刀具;C60(富勒烯)结构高温超导材料(?)、化工领域;碳纳米管纳电子器件原材料(?)、润滑剂(?)、替代碳纤维(?)晶体的结合方式原子结合的物理本质:四种力:引力、电力、弱相互作用力、强相互作用力;原子结合的本质是电相互作用力晶体的结合有5种:离子键(电价键,极性键);共价键(同极键);金属键;氢键;范德华键离子键与离子晶体:离子晶体中基本质点是正、负离子,它们之间存在的库仑相互作用使它们以离子键的形式结合成离子晶体I、离子晶体的一些特点:1.离子晶体是正、负离子的集合体,所以晶体中不存在有单个的分子;2.在晶体中正、负离子可以近似地看作带电的圆球,电荷在球上的分布是均匀的

4、,当异性电荷之间吸引力最大而同性电荷离子之间排斥力最小时,正、负离子间距离达到平衡; 3.离子晶体中没有自由运动的电子;而离子又被束缚在晶格点上,因此离子晶体在常温下不导电、不传热;4.能量相当于紫外光一可见光范围的光子不足以使离子的外层电子激发,因此,纯的离子晶体对于紫外光一可见光是透明的;5.由于离子键能较大:约800 Nm01(2000 kcaymol),因而离子晶体熔点比较高,硬度也较大;6.在交变外力、机械力作用下,离子位移仅仅为1/2晶胞长度时,原来异性离子相间排列变为同性离子相邻排列,吸引力变为排斥力,晶体结构就遭到破坏,因此离子晶体比较脆容易破碎。离子化合物一般都是由活泼的金属

5、元素(如I A、IIA、IIIA族元素和过渡元素的低氧化态)与活泼的非金属元素(如VA、VIA、VIIA族元素)组成。II、几种典型的离子晶体:1.氯化钠:2.氯化铯:3.闪锌矿(ZnS)结构:4.金刚石结构5.纤锌矿(ZnS)结构:III、离子晶体的点阵能:假设有一对离子MZ和M-Z,它们之间距离为r,根据库仑定律它们之间静电作用能为当离子接近到一定距离时出现了电子云的排斥作用,随着距离的靠近这种排斥能剧增,这种排斥能可以表示为(玻恩):式中B为比例常数那是玻恩排斥系数,它反映了离子之间抗压缩的能力,所以可从晶体压缩率的测量中求出,n的大小与电子构型有关,较大的离子其电子密度出较大,因此n值

6、也较大。一对正负离子的总势能与离子间距离的关系是: 这就是一对正负离子所对应的相互作用能。以NaCl结构为例,求1摩尔氯化钠晶体的点阵能:NA为阿伏伽德罗常数。定义括号中的级数A为马德隆(Madelung)常数,则有玻恩兰德(Born-Lande)离子晶体点阵能方程,:A是一个仅与晶体点阵结构有关而与离子半径和电荷无关的无量纲的结构常数。对于NaClA1747558。各类离子晶体的马德隆常数:离子化合物的点阵能、离子电荷及它们的物理性质间的关系:I电离量一定:此时点阵能与离子间间距成反比,熔点随间距的增加而降低,热膨胀系数随间距的增加而增加。II电离量增加:此时:随着电离量的增加材料的熔点提高

7、,硬度也提高(但关系非单调:离子间距可能不同)IV、离子半径利用X射线可以确定晶体结构中两种离子之间的距离,对于碱金属卤化物可有如下结果:随着元素序数的增加离子间距也在单调增加。由此,兰德在20年代提出了基于刚性球的离子模型,以及建立了相应的离子半径概念。以碘化锂晶体为例:假设不同化合物中同一种离子的离子半径是常数。据此1920年兰德设想,在LiI晶体中I互相直接接触,而Li填充其间隙,由此求得I的离子半径为213A,并由此求得Br、C1、F的离子半径为188、172、132A。根据上表就可求出各碱金属的离子半径。布拉格、戈德施密持等利用类似方法求出了80多种离子的半径。物理上将原子视为刚性球

8、有问题,只能有条件的成立。元素的离子半径与离子价态、配位数有关。Shannon离子半径表:Shanonn 离子半径表IONECCNIRIONECCNIRIONECCNIRIONECCNIRAg14D10II0.67F-12P6II1.29Na12P6VIIII1.24Si42P6IV0.26Ag14D10IV1F-12P6III1.3Na12P6XII1.39Si42P6VI0.4Ag14D10IV1.02F-12P6IV1.31Ni23D8IV0.49Sn44D10IV0.55Ag14D10V1.09F-12P6VI1.33Ni23D8IV0.55Sn44D10V0.62Ag14D10VI1

9、.15F71S2VI0.08Ni23D8V0.63Sn44D10VI0.69Ag14D10VII1.22Fe23D6IV0.63Ni23D8VI0.69Sn44D10VII0.75Ag14D10VIII1.28Fe23D6IV0.64Ni33D7VI0.56Sn44D10VIII0.81Ag24D9IV0.79Fe23D6VI0.61Ni33D7VI0.6Sr24P6VI1.18Ag24D9VI0.94Fe23D6VI0.78Ni43D6VI0.48Sr24P6VII1.21Ag34D8IV0.67Fe23D6VIII0.92O-22P6II1.35Sr24P6VIII1.26Ag34D8VI

10、0.75Fe33D5IV0.49O-22P6III1.36Sr24P6VIIII1.31Al32P6IV0.39Fe33D5V0.58O-22P6IV1.38Sr24P6X1.36Al32P6V0.48Fe33D5VI0.55O-22P6VI1.4Sr24P6XII1.44Al32P6VI0.54Fe33D5VI0.65O-22P6VIII1.42Zn23D10IV0.6Au15D10VI1.37Fe33D5VIII0.78OH-1II1.32Zn23D10V0.68Au35D8IV0.68Fe43D4VI0.59OH-1III1.34Zn23D10VI0.74Au35D8VI0.85Fe63

11、D2IV0.25OH-1IV1.35Zn23D10VIII0.9Au55D6VI0.57Ga33D10IV0.47OH-1VI1.37Zr44P6IV0.59B31S2III0.01Ga33D10V0.55Pb26S2IV0.98Zr44P6V0.66B31S2IV0.11Ga33D10VI0.62Pb26S2VI1.19Zr44P6VI0.72B31S2VI0.27Ge24S2VI0.73Pb26S2VII1.23Zr44P6VII0.78Ba25P6VI1.35Ge43D10IV0.39Pb26S2VIII1.29Zr44P6VIII0.84Ba25P6VII1.38Ge43D10VI0.

12、53Pb26S2VIIII1.35Zr44P6VIIII0.89Ba25P6VIII1.42H11S0I-0.38Pb26S2X1.4Ba25P6VIIII1.47H11S0II-0.18Pb26S2XI1.45Ba25P6X1.52Hg16S1III0.97Pb26S2XII1.49Ba25P6XI1.57Hg16S1VI1.19Pb45D10IV0.65Ba25P6XII1.61Hg25D10II0.69Pb45D10V0.73IR : effective ionic radiusC41S2III-0.08Hg25D10IV0.96Pb45D10VI0.78C41S2IV0.15Hg25D

13、10VI1.02Pb45D10VIII0.94C41S2VI0.16Hg25D10VIII1.14Sb35S2VI0.76Ca23P6VI1K13P6IV1.37Sb54D10VI0.6Ca23P6VII1.06K13P6VI1.38Sc33P6VI0.75Ca23P6VIII1.12K13P6VII1.46Sc33P6VIII0.87V、密堆积原理如果把离子或原了看作是硬圆球,那么就会发现它们在晶体中排列方式服从密堆积原理,亦即离子或原子间的作用力会使它们尽可能地占有最小空间,或者说空间利用率最高的结构可能是最稳定酌结构。六方密堆积(hcp):ABABAB.立方密堆积:(ccp):ABCAB

14、CABC对于带电的半径相同的正、负离子,由于存在静电相互作用,显然因128(b)的排列方式是不稳定的,而必须采用图128(c)方式,CsCl晶体就是按这种正、负离子柏间排列形成的8配位的体心立方格于结构。但在实际晶体中*正、负离子半径相差都很大,此时半径大的负离子仍可按六万或立方密堆积方式排列,向半径小的正离子可处在密堆积的孔隙中,形成稳定的结构,这种结构也符合密堆积原理。稳定性图示:a:阴离子不接触,稳定;b:开始接触,稳定极限;c:接触,不稳定;d:阳离子位置移动,不稳定;e:形成新的配位数,稳定。6配位(8面体)情况下的阳离子半径极限:由此得到:R+/R-=0.414。对于CsCl结构(

15、8配位),有:R+/R-=(3)10.732各种R+/R-对应的配位数:共价键与共价化合物共价化合物:是指那种通过原子间价电子共享,从而使各原子外围表现为类似的惰性气体电子结构形式的化合物。共价晶体:借助共价键结合成的晶体称为共价晶体。共价晶体的特点:由于离子晶体是正、负离子的集合体,故实际上不存在单个的离子化合物分子,而共价键的饱和性和方向性使原干只能在一定购方向与有限的原子结合成共价化合物,再加共价力仅存在于分子内部,所以存在有单独的共价化合物的分子,然而再借助于别的作用力,例如氢键、范德华键,构成氢键晶体或分子晶体,因而有共价键的晶体绝大多数为分子晶体或氢键晶体。当然也有若干晶体结构,共

16、价力贯穿整个结构,例如碳的金刚石结构、硅晶体等等。几种典型的共价晶体:1.金刚石结构:对于碳原子来讲,密堆积排列应该是一个碳原子被12个碳原子包围而不是类同闪锌矿的金刚石结构那样被4个碳原子包围,碳原子处于四面体中心的实质源自于碳原子外围(2s2)(2p2)电子引起的sp3电子轨道杂化所致,四面体的角顶正是杂化轨道的指向,因而碳的全刚石结构是共价键作用的结果,并在某种意义上可将整个金刚石晶体看作是一个大的碳分子。2.硅酸盐结构陶瓷材料的基体材料硅酸盐中结构单元是SiO4所组成的四面体,四面体中心的硅原子sp3杂化轨道的四面体指向与4个氧原子结合成SiO4四面体。此中硅氧键长为160 A,低于硅离子和氧离子的半径,这表明了硅氧键之间存在共价性成分。共价半径类似于离子半径,可以定义共价半径,但有几点限制:1.共价半径仅适用于以共价键相连的原子间距离的计算。2.相同原子间键长取决于键数,三键比双键短,双键又比单键短。3.共振效应会对键长产生影响。4.如若希望通过理论计算采求键长时即使按共价键,也必须将组成键的所有轨道考虑进去才能得到有关键的特性和强度,即不同类型的杂化轨道它的键长不同。共价半径与键数间的关系:晶体的复杂性:离子晶体与共价晶体的混合原子轨道:s, p, d, f分子轨道:, , ,

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1