1、高考数学试题精编有答案精选学习文档2019年高考数学试题精编(有答案)一、选择题:本大题共7小题,每小题5分,共35分.在每个小题给出的四个选项中,只有一项是符合题目要求的.1.复数i+i2在复平面内表示的点在A.第一象限高考数学试题由查字典数学网收集整理!B.第二象限C.第三象限D.第四象限2.设xR,则xe的一个必要不充分条件是A.x B.x1C.x D.x33.若f(x)=2cos -sin x,则f()等于A.-sinB.-cosC.-2sin -cosD.-3cos4.下列三句话按三段论的模式排列顺序正确的是z1,z2不能比较大小;虚数不能比较大小;z1,z2是虚数.A. B.C.
2、D.5.若a=(1,2),b=(2,-1,1),a与b的夹角为60,则的值为A.17或-1 B.-17或1C.-1 D.16.设F1,F2是椭圆+=1(a5)的两个焦点,且|F1F2|=8,弦AB过点F1,则ABF2的周长为A.10B.20C.2D.47.对于R上可导的任意函数f(x),若满足(x-2)f(x)0,则必有A.f(-3)+f(3)2f(2)B.f(-3)+f(7)2f(2)C.f(-3)+f(3)2f(2)D.f(-3)+f(7)2f(2)二、填空题:本大题共6个小题,每小题5分,共30分.请把答案填在答题卷对应题号后的横线上.8.复数10的值是.9.用反证法证明命题:若x,y0
3、,且x+y2,则,中至少有一个小于2时,假设的内容应为.10.已知等差数列an中,有=成立.类似地,在等比数列bn中,有 成立.11.曲线y=sin x在0,上与x轴所围成的平面图形的面积为 .12.已知函数f(x)=x(x-c)2在x=2处有极大值,则c的值为 .13.正整数按下列方法分组:1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,记第n组中各数之和为An;由自然数的立方构成下列数组:03,13,13,23,23,33,33,43,记第n组中后一个数与前一个数的差为Bn,则An+Bn= .三、解答题:本大题共3小题,共35分,解答应写出文字说明,证明过程或
4、演算步骤.14.(本小题满分11分)已知函数f(x)=ax3+(a-1)x2+27(a-2)x+b的图象关于原点成中心对称,试判断f(x)在区间-4,5上的单调性,并求出f(x)在区间-4,5上的最值.15.(本小题满分12分)已知数列an满足Sn+an=2n+1.(1)写出a1,a2,a3,并推测an的表达式;(2)用数学归纳法证明所得的结论.16.(本小题满分12分)如图,已知四棱锥P-ABCD中,底面ABCD为菱形,且AC=AB=BC=2,PA平面ABCD,E,F分别是BC,PC的中点.(1)证明:AE(2)若H为PD上一点,且AHPD,EH与平面PAD所成角的正切值为,求二面角E-AF
5、-C的余弦值.必考试卷一、选择题:本大题共1个小题,每小题5分,满分5分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.定义在R上的函数f(x)的导函数f(x)的图像如图,若两个正数a,b满足f(2a+b)1,且f(4)=1,则的取值范围是A.B.(5,+)C.(-,3)D.二、填空题:本大题共1个小题,每小题5分,共5分.请把答案填在答题卷对应题号后的横线上.2.设函数f(x)=x(x+k)(x+2k)(x-3k),且f(0)=6,则k= .三、解答题:本大题共3小题,共40分,解答应写出文字说明,证明过程或演算步骤.3.(本小题满分13分)某电视生产企业有A、B两种型号的电视机参
6、加家电下乡活动,若企业投放A、B两种型号电视机的价值分别为a、b万元,则农民购买电视机获得的补贴分别为a、mln(b+1)万元(m0且为常数).已知该企业投放总价值为10万元的A、B两种型号的电视机,且A、B两种型号的投放金额都不低于1万元.(1)请你选择自变量,将这次活动中农民得到的总补贴表示为它的函数,并求其定义域;(2)求当投放B型电视机的金额为多少万元时,农民得到的总补贴最大?4.(本小题满分13分)已知椭圆C:+=1(a0)的离心率为,以椭圆C的左顶点T为圆心作圆T:(x+2)2+y2=r2(r0),设圆T与椭圆C交于点M与点N.(1)求椭圆C的方程;(2)求的最小值,并求此时圆T的
7、方程;(3)设点P是椭圆C上异于M,N的任意一点,且直线MP,NP分别与x轴交于点R,S,O为坐标原点,求证:为定值.5.(本小题满分14分)已知函数f(x)=ex,xR.(1)若直线y=kx+1与f(x)的反函数的图象相切,求实数k的值;(2)设x0,讨论曲线y=与直线y=m(m0)公共点的个数;(3)设函数h满足x2h(x)+2xh(x)=,h(2)=,试比较h(e)与的大小.湖南师大附中2019届高二第一学期期末考试试题数学(理科)参考答案必考试卷又函数f(x)在-4,5上连续.f(x)在(-3,3)上是单调递减函数,在(-4,-3)和(3,5)上是单调递增函数.(9分)f(x)的最大值
8、是54,f(x)的最小值是-54.(11分)15.解:(1)a1=,a2=,a3=,.猜测an=2-(5分)(2)由(1)已得当n=1时,命题成立;(7分)假设n=k时,命题成立,即ak=2-,(8分)当n=k+1时,a1+a2+ak+ak+1+ak+1=2(k+1)+1,且a1+a2+ak=2k+1-ak2k+1-ak+2ak+1=2(k+1)+1=2k+3,2ak+1=2+2-,ak+1=2-,即当n=k+1时,命题成立.(11分)根据得nN+时,an=2-都成立.(12分)16.(1)证明:由AC=AB=BC,可得ABC为正三角形.因为E为BC的中点,所以AEBC.又BCAD,因此AEA
9、D.因为PA平面ABCD,AE平面ABCD,所以PAAE.而PA平面PAD,AD平面PAD且PAAD=A,所以AE平面PAD.又PD平面PAD,所以AEPD.(5分)(2)解:因为AHPD,由(1)知AE平面PAD,则EHA为EH与平面PAD所成的角.在RtEAH中,AE=,此时tanEHA=,在RtAOE中,EO=AEsin 30=,AO=AEcos 30=,又F是PC的中点,在RtASO中,SO=AOsin 45=,又SE=,在RtESO中,cosESO=,即所求二面角的余弦值为.(12分)解法二:由(1)知AE,AD,AP两两垂直,以A为坐标原点,建立如图所示的空间直角坐标系,又E,F分
10、别为BC,PC的中点,所以A(0,0,0),B(,-1,0),C(,1,0),D(0,2,0),P(0,0,2),E(,0,0),F,所以=(,0,0),所以cosm,=.因为二面角E-AF-C为锐角,所以所求二面角的余弦值为.(12分)一、选择题1.D 【解析】由图像可知f(x)在(-,0)递减,在(0,+)递增,所以f(2a+b)1即2a+b4,原题等价于,求的取值范围.画出不等式组表示的可行区域,利用直线斜率的意义可得.二、填空题2.-1 【解析】思路分析:按导数乘积运算法则先求导,然后由已知条件构造关于k的方程求解.f(x)=(x+k)(x+2k)(x-3k)+x(x+2k)(x-3k
11、)+x(x+k)(x-3k)+x(x+k)(x+2k)故f(0)=-6k3,又f(0)=6,故k=-1.三、解答题3.解:(1)设投放B型电视机的金额为x万元,则投放A型电视机的金额为(10-x)万元,农民得到的总补贴f(x)=(10-x)+mln(x+1)=mln(x+1)-+1,(19).(5分)(没有指明x范围的扣1分)(2)f(x)=-=,令y=0,得x=10m-1(8分)1 若10m-11即02 若110m-19即3 若10m-19即m1,则f(x)在1,9是增函数,当x=9时,f(x)有最大值.因此,当0当当m1时,投放B型电视机9万元,农民得到的总补贴最大.(13分)4.解:(1
12、)依题意,得a=2,e=,c=,b=1;故椭圆C的方程为+y2=1.(3分)(2)方法一:点M与点N关于x轴对称,设M(x1,y1),N(x1,-y1),不妨设y10.由于点M在椭圆C上,所以y=1-.(*)(4分)由已知T(-2,0),则=(x1+2,y1),=(x1+2,-y1),=(x1+2,y1)(x1+2,-y1)=(x1+2)2-y=(x1+2)2-=x+4x1+3方法二:点M与点N关于x轴对称,故设M(2cos ,sin ),N(2cos ,-sin ),不妨设sin 0,由已知T(-2,0),则=(2cos +2,sin )(2cos +2,-sin )=(2cos +2)2-
13、sin2=5cos2+8cos +3=52-.(6分)故当cos =-时,取得最小值为-,此时M,又点M在圆T上,代入圆的方程得到r2=.故圆T的方程为:(x+2)2+y2=.(8分)(3)方法一:设P(x0,y0),则直线MP的方程为:y-y0=(x-x0),令y=0,得xR=,同理:xS=,(10分)故xRxS=(*)(11分)又点M与点P在椭圆上,故x=4(1-y),x=4(1-y),(12分)代入(*)式,得:xRxS=4.所以=4为定值.(13分)方法二:设M(2cos ,sin ),N(2cos ,-sin ),不妨设sin 0,P(2cos ,sin ),其中sin sin .则
14、直线MP的方程为:y-sin =(x-2cos ),令y=0,得xR=,同理:xS=,(12分)故xRxS=4.所以=4为定值.(13分)5.解:(1)f的反函数g(x)=ln x.设直线y=kx+1与g(x)=ln x相切于点P(x0,y0),则x0=e2,k=e-2.所以k=e-2.(3分)(2)当x0,m0时,曲线y=f(x)与曲线y=mx2(m0)的公共点个数即方程f(x)=mx2根的个数.由f(x)=mx2m=,令v(x)=v(x)=,则v(x)在(0,2)上单调递减,这时v(x)(v(2),+v(x)在(2,+)上单调递增,这时v(x)(v(2),+).v(2)=.v(2)是y=v
15、(x)的极小值,也是最小值.(5分)所以对曲线y=f(x)与曲线y=mx2(m0)公共点的个数,讨论如下:当m时,有0个公共点;当m=时,有1个公共点;当m时有2个公共点;(8分)(3)令F(x)=x2h(x),则F(x)=x2h(x)+2xh=所以h=,故h=令G(x)=ex-2F(x),则G(x)=ex-2F(x)=ex-2=显然,当0当x2时,G(x)0,G(x)单调递增;所以,在(0,+)范围内,G(x)在x=2处取得最小值G(2)=0.即x0时,ex-2F(x)0.故在(0,+)内,h(x)0,所以h(x)在(0,+)单调递增,语文课本中的文章都是精选的比较优秀的文章,还有不少名家名
16、篇。如果有选择循序渐进地让学生背诵一些优秀篇目、精彩段落,对提高学生的水平会大有裨益。现在,不少语文教师在分析课文时,把文章解体的支离破碎,总在文章的技巧方面下功夫。结果教师费劲,学生头疼。分析完之后,学生收效甚微,没过几天便忘的一干二净。造成这种事倍功半的尴尬局面的关键就是对文章读的不熟。常言道“书读百遍,其义自见”,如果有目的、有计划地引导学生反复阅读课文,或细读、默读、跳读,或听读、范读、轮读、分角色朗读,学生便可以在读中自然领悟文章的思想内容和写作技巧,可以在读中自然加强语感,增强语言的感受力。久而久之,这种思想内容、写作技巧和语感就会自然渗透到学生的语言意识之中,就会在写作中自觉不自
17、觉地加以运用、创造和发展。又因为h(2)=,h(2)要练说,得练看。看与说是统一的,看不准就难以说得好。练看,就是训练幼儿的观察能力,扩大幼儿的认知范围,让幼儿在观察事物、观察生活、观察自然的活动中,积累词汇、理解词义、发展语言。在运用观察法组织活动时,我着眼观察于观察对象的选择,着力于观察过程的指导,着重于幼儿观察能力和语言表达能力的提高。唐宋或更早之前,针对“经学”“律学”“算学”和“书学”各科目,其相应传授者称为“博士”,这与当今“博士”含义已经相去甚远。而对那些特别讲授“武事”或讲解“经籍”者,又称“讲师”。“教授”和“助教”均原为学官称谓。前者始于宋,乃“宗学”“律学”“医学”“武学”等科目的讲授者;而后者则于西晋武帝时代即已设立了,主要协助国子、博士培养生徒。“助教”在古代不仅要作入流的学问,其教书育人的职责也十分明晰。唐代国子学、太学等所设之“助教”一席,也是当朝打眼的学官。至明清两代,只设国子监(国子学)一科的“助教”,其身价不谓显赫,也称得上朝廷要员。至此,无论是“博士”“讲师”,还是“教授”“助教”,其今日教师应具有的基本概念都具有了。所以h(e).(14分)高考数学试题由查字典数学网收集整理!
copyright@ 2008-2022 冰豆网网站版权所有
经营许可证编号:鄂ICP备2022015515号-1