1、高中物理选修32电磁感应教案 高中物理选修32教案第一节:探究电磁感应的产生条件 1、实验观察(1)闭合电路的部分导体切割磁感线在初中学过,当闭合电路的一部分导体做切割磁感线运动时,电路中会产生感应电流,如图4.2-1所示。演示:导体左右平动,前后运动、上下运动。观察电流表的指针,把观察到的现象记录在表1中。如图所示。观察实验,记录现象。表1导体棒的运动表针的摆动方向导体棒的运动表针的摆动方向向右平动向左向后平动不摆动向左平动向右向上平动不摆动向前平动不摆动向下平动不摆动结论:只有左右平动时,导体棒切割磁感线,有电流产生,前后平动、上下平动,导体棒都不切割磁感线,没有电流产生。还有哪些情况可以
2、产生感应电流呢?(2)向线圈中插入磁铁,把磁铁从线圈中拔出演示:如图4.2-2所示。把磁铁的某一个磁极向线圈中插入,从线圈中拔出,或静止地放在线圈中。观察电流表的指针,把观察到的现象记录在表2中。观察实验,记录现象。表2磁铁的运动表针的摆动方向磁铁的运动表针的摆动方向N极插入线圈向右S极插入线圈向左N极停在线圈中不摆动S极停在线圈中不摆动N极从线圈中抽出向左S极从线圈中抽出向右结论:只有磁铁相对线圈运动时,有电流产生。磁铁相对线圈静止时,没有电流产生。(3)模拟法拉第的实验演示:如图4.2-3所示。线圈A通过变阻器和开关连接到电源上,线圈B的两端与电流表连接,把线圈A装在线圈B的里面。观察以下
3、几种操作中线圈B中是否有电流产生。把观察到的现象记录在表3中。观察实验,记录现象。表3操作现象开关闭合瞬间有电流产生开关断开瞬间有电流产生开关闭合时,滑动变阻器不动无电流产生开关闭合时,迅速移动变阻器的滑片有电流产生结论:只有当线圈A中电流变化时,线圈B中才有电流产生。2、分析论证演示实验1中,部分导体切割磁感线,闭合电路所围面积发生变化(磁场不变化),有电流产生;当导体棒前后、上下平动时,闭合电路所围面积没有发生变化,无电流产生。演示实验2中,磁体相对线圈运动,线圈内磁场发生变化,变强或者变弱(线圈面积不变),有电流产生;当磁体在线圈中静止时,线圈内磁场不变化,无电流产生。(如图4.2-4)
4、 演示实验3中,通、断电瞬间,变阻器滑动片快速移动过程中,线圈A中电流变化,导致线圈B内磁场发生变化,变强或者变弱(线圈面积不变),有电流产生;当线圈A中电流恒定时,线圈内磁场不变化,无电流产生。(如图4.2-5)3、归纳总结实例1中,部分导体切割磁感线,磁场不变,但电路面积变化,从而穿过电路的磁通量变化,从而产生感应电流;实例2中,导体插入、拔出线圈,线圈面积不变,但磁场变化,同样导致磁通量变化,从而产生感应电流;实例3中,通断电的瞬间,滑动变阻器的滑动片迅速滑动的瞬间,都引起线圈A中电流的变化,最终导致线圈B中磁通量变化,从而产生感应电流。从这三个实例看见,感应电流产生的条件,应是穿过闭合
5、电路的磁通量变化。引起感应电流的表面因素很多,但本质的原因是磁通量的变化。因此,电磁感应现象产生的条件可以概括为:只要穿过闭合电路的磁通量变化,闭合电路中就有感应电流产生。 (四)实例探究关于磁通量的计算【例1】如图所示,在磁感应强度为 B的匀强磁场中有一面积为S的矩形线圈abcd,垂直于磁场方向放置,现使线圈以ab边为轴转180,求此过程磁通量的变化?解:初态中,末态,故关于电磁感应现象产生的条件【例2】在图所示的条件下,闭合矩形线圈中能产生感应电流的是( ) 答案:EF【例3】(综合性思维点拨)如图(甲)所示,有一通电直导线MN水平放置,通入向右的电流I,另有一闭合线圈P位于导线正下方且与
6、导线位于同一竖直平面,正竖直向上运动。问在线圈P到达MN上方的过程中,穿过P的磁通量是如何变化的?在何位置时P中会产生感应电流?解:根据直流电流磁场特点,靠近导线处磁场强,远离导线处磁场弱。把线圈P从MN下方运动到上方过程中的几个特殊位置如图(乙)所示,可知磁通量增加,磁通量减小,磁通量增加,磁通量减小,所以整个过程磁通量变化经历了增加减小增加减小,所以在整个过程中P中都会有感应电流产生。关于电磁感应现象的实际应用【例4】如图所示是生产中常用的一种延时继电器的示意图。铁芯上有两个线圈A和B。线圈A跟电源连接,线圈B的两端接在一起,构成一个闭合回路。在断开开关S的时候,弹簧E并不能立即将衔铁D拉
7、起,因而不能使触头C(连接工作电路)立即离开,过一段时间后触头C才能离开,延时继电器就是这样得名的。试说明这种继电器的原理。解析:线圈A与电源连接,线圈A中有恒定电流,产生恒定磁场,有磁感线穿过线圈B,但穿过线圈B的磁通量不变化,线圈 B中无感应电流。断开开关S时,线圈A中电流迅速减减小为零,穿过线圈B的磁通量也迅速减少,由于电磁感应,线圈B中产生感应电流,由于感应电流的磁场对衔铁D的吸引作用,触头C不离开;经过一小段时间后感应电流减弱,感应电流磁场对衔铁D的吸引力减小,当弹簧E的作用力比磁场力大时,才将衔铁D拉起,触头C离开巩固练习1.关于磁通量、磁通密度、磁感应强度,下列说法正确的是 (
8、)A磁感应强度越大的地方,磁通量越大B穿过某线圈的磁通量为零时,由B=可知磁通密度为零C磁通密度越大,磁感应强度越大D磁感应强度在数值上等于1 m2的面积上穿过的最大磁通量 答案:CD2.下列单位中与磁感应强度的单位“特斯拉”相当的是 ( )AWb/m2 BN/Am Ckg/As2 Dkg/Cm 答案:ABC3.关于感应电流,下列说法中正确的是 ( )A只要穿过线圈的磁通量发生变化,线圈中就一定有感应电流B只要闭合导线做切割磁感线运动,导线中就一定有感应电流C若闭合电路的一部分导体不做切割磁感线运动,闭合电路中一定没有感应电流D当穿过闭合电路的磁通量发生变化时,闭合电路中一定有感应电流答案:D
9、4.在一长直导线中通以如图所示的恒定电流时,套在长直导线上的闭合线环(环面与导线垂直,长直导线通过环的中心),当发生以下变化时,肯定能产生感应电流的是 ( )A保持电流不变,使导线环上下移动B保持导线环不变,使长直导线中的电流增大或减小C保持电流不变,使导线在竖直平面内顺时针(或逆时针)转动D保持电流不变,环在与导线垂直的水平面内左右水平移动解析:画出电流周围的磁感线分布情况。答案:C5.如图所示,环形金属软弹簧,套在条形磁铁的中心位置。若将弹簧沿半径向外拉,使其面积增大,则穿过弹簧所包围面积的磁通量将 ( )A增大 B减小C不变 D无法确定如何变化 答案:B6.行驶中的汽车制动后滑行一段距离
10、,最后停下;流星在夜空中坠落并发出明亮的火焰;降落伞在空中匀速下降;条形磁铁在下落过程中穿过闭合线圈,线圈中产生电流。上述不同现象中所包含的相同的物理过程A物体克服阻力做功B物体的动能转化为其他形式的能量C物体的势能转化为其他形式的能量D物体的机械能转化为其他形式的能量解析:都是宏观的机械运动对应的能量形式机械能的减少,相应转化为其他形式能(如内能、电能)。能的转化过程也就是做功的过程。答案:AD7.在无线电技术中,常有这样的要求:有两个线圈,要使一个线圈中有电流变化时,对另一个线圈几乎没有影响。图16-1-9中,最能符合这样要求的一幅图是 ( ) 答案:D 第二节 法拉第电磁感应定律感应电动
11、势的大小在电磁感应现象里,既然闭合电路里有感应电流,那么这个电路中也必定有电动势,在电磁感应现象里产生的电动势叫做感应电动势,产生感应电动势的那部分导体就相当于电源。(一)感应电动势:在电磁感应现象中产生的电动势。 产生电动势的那部分导体相当于电源。分析:电路闭合,有感应电流,由感应电动势的大小和电路的电阻决定电路断开,无感应电流,有感应电动势那么电动势的大小跟哪些因素有关呢?今天我们就来研究这个问题上节课实验分析:图中所示实验中,导体AB棒的速度越大,发现感应电流越大,也即感应电动势越大。磁铁运动的越快,感应电流和感应电动势就越大。通电或断电,比改变滑动变阻器时的感应电流要来得大些。上述实验
12、都有一个共同点:磁通量在改变,磁通量改变越快,发现电流越大,感应电动势也越大实验表明:感应电动势的大小与穿过闭合电路的磁通量变化快慢有关小结:感应电动势的大小跟穿过闭合电路的磁通量改变快慢有关系。我们用磁通量的变化率来描述磁通量变化的快慢。(二)、磁通量的变化率1、磁通量、磁通量的变化量、磁通量的变化率三者的联系和区别设时刻t1时穿过闭合电路的磁通量为1,设时刻t2时穿过闭合电路的磁通量为2,则在时间t= t2-t1内磁通量的变化量为=2-1,磁通量的变化率/t2、磁通量的变化率=/t举例:甲、乙两个线圈的磁通量都从0增加到5wb,甲用了2s,乙用了5s哪个变化率大?、(三)、法拉第电磁感应定
13、律:电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比即E= k/t (k为比例系数)在国际制单位中:E的单位是伏特(V),的单位是韦伯(Wb),t的单位是秒(s)则:,所以取国际制单位时,k=1感应电动势可写为:1、公式:E=/t(适合于任何情况) n个线圈时 ,看成串联,则E= n/t2、单位:伏特注:单位要用国际制单位公式中,/t均取绝对值,该公式只要求出大小就可以,不考虑正负极。所求电动势和电流都是平均值。磁通量变化的几种情形:a.B不变,S(与B垂直)变;b.S不变,B变。 如果磁通量的变化是由于导体和磁体的相对运动引起的,即:导体在匀强磁场中做切割磁感线运动时,导体里产生
14、的感应电动势的大小,跟磁感强度、导体的长度、导体运动的速度成正比,我们可以把上式变换成一种更便于应用的形式。在时间内:s=VtL所以磁通量的变化量 =Bs=BVtL E=/t= BVtL/t=BLV(四)、导体切割磁感线时的感应电动势:公式:E=BLV(适用于匀强磁场,Bv) B与V有夹角。分解V,平行BV2=Vcos,没有切割,无电动势垂直BV1=Vsin,切割产生电动势E=BLVsin 结论:导体切割磁感线时,产生的感应电动势的大小,跟磁感应强度B、导线长度L、运动速度v以及运动方向和磁感应强度方向的夹角的正弦sin成正比。注:这是法拉第电磁感应定律的第一个推论。公式中V为导体棒和磁场的相
15、对运动速度。公式中的单位分别是:V,T,m.m/s 1VlT1m1m/s第三节 楞次定律的应用一、应用楞次定律,判定感应电流的方向1、原磁场为条形磁铁的磁场例1确定磁铁的S极移近或远离螺线管时判断感应电流的方向.(1)条形磁铁移近螺线管(如图所示)确定线圈所在区域磁场分布及磁场方向(判断:原磁场方向向上,有向上的磁感线穿过螺线管)确定穿过闭合回路的磁通量的变化(判断:当S极靠近螺线管时,穿过螺线管的磁通量增加)由楞次定律可知,感应电流的磁场(判断:由于感应电流的磁场要阻碍磁通量的增加,因此感应电流的磁场方向跟原来的磁场方向相反)利用安培定则确定感应电流方向.(如图)(2)条形磁铁离开螺线管判断
16、原磁场方向(向上)判断穿过螺线管的磁通量变化(减少)由楞次定律确定感应电流的磁场方向(与原磁场方向相同,体现“阻碍”特征)由安培定则确定感应电流的方向(如右图)提示:图中实线表示磁铁的磁感线,虚线表示感应电流的磁感线.【思考】从相对运动来说,是否是阻碍相对运动?2、原磁场为电流的磁场例2 一可控通电螺线管A,外套一个闭合螺线管B(如图),当闭合电键或减小电阻的阻值,使螺线管A中的电流增大时,B中的感应电流方向如何?电键断开或增大电阻的阻值时,B中的感应电流方向又如何?(1)当A中电流增加时,判断B中感应电流方向显示原磁场(A电流产生的磁场)的方向(如图) (演示:合电键以及使R减小,都显示A中
17、电流发生变化,因此通过B的磁通量发生变化,有感应电流产生)说明电键闭合(或电阻R调小)向里磁通量增加;由楞次定律,B中感应电流的磁场“阻碍”磁通量的增加;(向外)由安培定则,B中感应电流方向得以判定.(逆时针)强调:1、对A:内=外,而外只有一部分穿过B,则穿过B的磁通量向里2、当电流增加时,A线圈的磁场增强,内(即总磁通量)、外都增加,但外增加的部分,有些落在B线圈外部,则穿过B向里的磁通量增加。(2)当A中电流减少时,判断B中感应电流方向原磁场方向向里(如图)当A中电流减少时,穿过B向里的磁通量减少由楞次定律,B中感应电流的磁场“阻碍”磁通量的减少(向里)由安培定则,B中感应电流方向得以判
18、定.(顺时针)小结:只要穿过闭合回路的磁通量发生变化就产生感应电流,且感应电流的方向一定遵循楞次定律3.利用右手定则,判断导体切割磁感线.右手定则与楞次定律本质一致,在导体切割磁感线时,用右手定则判断感应电流方向更简便.判断感应电流的方向第四节 感生电动势和动生电动势1、感应电场与感生电动势穿过闭会回路的磁场增强,在回路中产生感应电流。是什么力充当非静电力使得自由电荷发生定向运动呢?英国物理学家麦克斯韦认为,磁场变化时在空间激发出一种电场,这种电场对自由电荷产生了力的作用,使自由电荷运动起来,形成了电流,或者说产生了电动势。这种由于磁场的变化而激发的电场叫感生电场。感生电场对自由电荷的作用力充
19、当了非静电力。由感生电场产生的感应电动势,叫做感生电动势。 2、洛伦兹力与动生电动势思考与讨论。 1导体中自由电荷(正电荷)具有水平方向的速度,由左手定则可判断受到沿棒向上的洛伦兹力作用,其合运动是斜向上的。2自由电荷不会一直运动下去。因为C、D两端聚集电荷越来越多,在CD棒间产生的电场越来越强,当电场力等于洛伦兹力时,自由电荷不再定向运动。3C端电势高。4导体棒中电流是由D指向C的。一段导体切割磁感线运动时相当于一个电源,这时非静电力与洛伦兹力有关。由于导体运动而产生的电动势叫动生电动势。如图所示,导体棒运动过程中产生感应电流,试分析电路中的能量转化情况。导体棒中的电流受到安培力作用,安培力
20、的方向与运动方向相反,阻碍导体棒的运动,导体棒要克服安培力做功,将机械能转化为电能。 (四)实例探究感生电场与感生电动势【例1】如图所示,一个闭合电路静止于磁场中,由于磁场强弱的变化,而使电路中产生了感应电动势,下列说法中正确的是( )A磁场变化时,会在在空间中激发一种电场B使电荷定向移动形成电流的力是磁场力C使电荷定向移动形成电流的力是电场力D以上说法都不对 答案:AC洛仑兹力与动生电动势【例2】如图所示,导体AB在做切割磁感线运动时,将产生一个电动势,因而在电路中有电流通过,下列说法中正确的是( )A因导体运动而产生的感应电动势称为动生电动势B动生电动势的产生与洛仑兹力有关C动生电动势的产
21、生与电场力有关D动生电动势和感生电动势产生的原因是一样的解析:如图所示,当导体向右运动时,其内部的自由电子因受向下的洛仑兹力作用向下运动,于是在棒的B端出现负电荷,而在棒的 A端显示出正电荷,所以A端电势比 B端高棒 AB就相当于一个电源,正极在A端。答案:AB 综合应用【例3】如图所示,两根相距为L的竖直平行金属导轨位于磁感应强度为B、方向垂直纸面向里的匀强磁场中,导轨电阻不计,另外两根与上述光滑导轨保持良好接触的金属杆ab、cd质量均为m,电阻均为R,若要使cd静止不动,则ab杆应向_运动,速度大小为_,作用于ab杆上的外力大小为_答案:向上 2mg巩固练习1如图所示,一个带正电的粒子在垂
22、直于匀强磁场的平面内做圆周运动,当磁感应强度均匀增大时,此粒子的动能将( )A不变 B增加C减少 D以上情况都可能 答案:B 2穿过一个电阻为l 的单匝闭合线圈的磁通量始终是每秒钟均匀地减少2 Wb,则( )A线圈中的感应电动势一定是每秒减少2 V B线圈中的感应电动势一定是2 VC线圈中的感应电流一定是每秒减少2 AD线圈中的感应电流一定是2 A答案:BD3在匀强磁场中,ab、cd两根导体棒沿两根导轨分别以速度v1、v2滑动,如图所示,下列情况中,能使电容器获得最多电荷量且左边极板带正电的是( )Av1v2,方向都向右 Bv1v2,方向都向左 Cv1v2,v1向右,v2向左 Dv1v2,v1
23、向左,v2向右答案:C4如图所示,面积为0.2 m2的100匝线圈处在匀强磁场中,磁场方问垂直于线圈平面,已知磁感应强度随时间变化的规律为B=(2+0.2t)T,定值电阻R1=6,线圈电阻R2=4,求:(1)磁通量变化率,回路的感应电动势;(2)a、b两点间电压Uab答案:(1)4V(2)2.4A5如图所示,在物理实验中,常用“冲击式电流计”来测定通过某闭合电路的电荷量探测器线圈和冲击电流计串联后,又能测定磁场的磁感应强度已知线圈匝数为n,面积为S,线圈与冲击电流计组成的回路电阻为R,把线圈放在被测匀强磁场中,开始时线圈与磁场方向垂直,现将线圈翻转180,冲击式电流计测出通过线圈的电荷量为q,
24、由此可知,被测磁场的磁磁感应强度B=_答案: 6如图所示,A、B为大小、形状均相同且内壁光滑,但用不同材料制成的圆管,竖直固定在相同高度两个相同的磁性小球,同时从A、B管上端的管口无初速释放,穿过A管的小球比穿过B管的小球先落到地面下面对于两管的描述中可能正确的是( )AA管是用塑料制成的,B管是用铜制成的BA管是用铝制成的,B管是用胶木制成的CA管是用胶木制成的,B管是用塑料制成的DA管是用胶木制成的,B管是用铝制成的答案:AD第五节 互感和自感1、互感现象在法拉第的实验中两个线圈并没有用导线连接,当一个线圈中的电流变化时,在另一个线圈中为什么会产生感应电动势呢?请同学们用学过的知识加以分析
25、说明。当一个线圈中的电流变化时,它产生的磁场就发生变化,变化的磁场在周围空间产生感生电场,在感生电场的作用下,另一个线圈中的自由电荷定向运动,于是产生感应电动势。当一个线圈中电流变化,在另一个线圈中产生感应电动势的现象,称为互感。互感现象产生的感应电动势,称为互感电动势。利用互感现象,可以把能量从一个线圈传递到另一个线圈。因此,互感现象在电工技术和电子技术中有广泛的应用。请大家举例说明。变压器,收音机里的磁性天线。2、自感现象实验1演示通电自感现象。画出电路图(如图所示),A1、A2是规格完全一样的灯泡。闭合电键S,调节变阻器R,使A1、A2亮度相同,再调节R1,使两灯正常发光,然后断开开关S
26、。重新闭合S,观察到什么现象?(实验反复几次)现象:跟变阻器串联的灯泡A2立刻正常发光,跟线圈L串联的灯泡A1逐渐亮起来。提问:为什么A1比A2亮得晚一些?试用所学知识(楞次定律)加以分析说明。 电路接通时,电流由零开始增加,穿过线圈L的磁通量逐渐增加,L中产生的感应电动势的方向与原来的电流方向相反,阻碍L中电流增加,即推迟了电流达到正常值的时间。实验2演示断电自感。画出电路图(如图所示)接通电路,待灯泡A正常发光。然后断开电路,观察到什么现象?现象:S断开时,A灯突然闪亮一下才熄灭。提问:为什么A灯不立刻熄灭? 当S断开时,L中的电流突然减弱,穿过L的磁通量逐渐减少,L中产生感应电动势,方向
27、与原电流方向相同,阻碍原电流减小。L相当于一个电源,此时L与A构成闭合回路,故A中还有一段持续电流。灯A闪亮一下,说明流过A的电流比原电流大。如下图it所示.结论:导体本身电流发生变化而产生的电磁感应现象叫自感现象。自感现象中产生的电动势叫自感电动势。自感电动势的大小决定于哪些因素呢?请同学们阅读教材内容。然后用自己的语言加以概括,并回答有关问题。 自感电动势的大小决定于哪些因素?说出自感电动势的大小的计算公式。自感电动势的大小与线圈中电流的变化率成正比,与线圈的自感系数L成正比。写成公式为E =L L叫自感系数呢,自感系数是用来表示线圈的自感特性的物理量。 实验表明,线圈越大,越粗,匝数越多
28、,自感系数越大。另外,带有铁芯的线圈的自感系数比没有铁芯时大得多。自感系数的单位:亨利,符号H,更小的单位有毫亨(mH)、微亨(H) 1H=103 mH 1H=106H4磁场的能量提问:在断电自感的实验中,为什么开关断开后,灯泡的发光会持续一段时间?甚至会比原来更亮?试从能量的角度加以讨论。当线圈通电瞬间和断电瞬间,自感电动势都要阻碍线圈中电流的变化,使线圈中的电流不能立即增大到最大值或不能立即减小为零,因此可以借用力学中的术语,说线圈能够体现电的“惯性”。线圈的自感系数越大,这个现象越明显,可见,电的“惯性”大小决定于线圈的自感系数。(四)实例探究自感现象的分析与判断【例1】如图所示,电路甲
29、、乙中,电阻R和自感线圈L的电阻值都很小,接通S,使电路达到稳定,灯泡D发光。则 ( )A在电路甲中,断开S,D将逐渐变暗B在电路甲中,断开S,D将先变得更亮,然后渐渐变暗C在电路乙中,断开S,D将渐渐变暗D在电路乙中,断开S,D将变得更亮,然后渐渐变暗正确选项为AD【例2】如图所示,自感线圈的自感系数很大,电阻为零。电键K原来是合上的,在K断开后,分析:(1)若R1R2,灯泡的亮度怎样变化?(2)若R1R2,灯泡的亮度怎样变化?(1)因R1R2,即I1I2,所以小灯泡在K断开后先突然变到某一较暗状态,再逐渐变暗到最后熄灭。(2)因R1R2,即I1I2,小灯泡在K断开后电流从原来的I2突变到I1(方向相反),然后再渐渐变小,最后为零,所以灯泡在K断开后先变得比原来更亮,再逐渐变暗到熄灭。巩固练习1下列关于自感现象的说法中,正确的是 ( )A自感现象是由于导体本身的电流发生变化而产生的电磁感应现象B线圈中自感电动势的方向总与引起自感的原电流的方向相反C线圈中自感电动势的大小与穿过线圈的磁通量变化的快慢有关D加铁芯后线圈的自感系数比没有铁芯时要大2关于线圈的自感系数,下面说法正确的是 ( )A线圈的自感系数越大,自感电动势一定越大B线圈中电流等于零时,自感系数也等于零C线圈中电流变化越快,自感系数越大D线圈的自感系数由线圈本身的因素及有无铁芯决定3磁通量的单位是_,磁
copyright@ 2008-2022 冰豆网网站版权所有
经营许可证编号:鄂ICP备2022015515号-1