1、三角形的外角 公开课获奖教案7.5 三角形内角和定理第2课时 三角形的外角第一环节:情境引入活动内容: 在证明三角形内角和定理时,用到了把ABC的一边BC延长得到ACD,这个角叫做什么角呢?下面我们就给这种角命名,并且来研究它的性质活动目的: 引出三角形外角的概念,并对其进行研究,激发学生学习兴趣。注意事项: 教师应在学生充分展示自己的意见之后,有意识地引导学生从三角形的外角的角度进行思考。第二环节:探索新知活动内容: 三角形的外角定义:三角形的一边与另一边的延长线所组成的角,叫做三角形的外角, 结合图形指明外角的特征有三:(1)顶点在三角形的一个顶点上(2)一条边是三角形的一边(3)另一条边
2、是三角形某条边的延长线 两个推论及其应用由学生探讨三角形外角的性质:问题1:如图,ABC中,A=70,B=60,ACD是ABC的一个外角,能由A、B求出ACD吗?如果能,ACD与A、B有什么关系?问题2:任意一个ABC的一个外角ACD与A、B的大小会有什么关系呢?由学生归纳得出:推论1: 三角形的一个外角等于和它不相邻的两个内角的和推论 2:三角形的一个外角大于任何一个和它不相邻的内角例1、已知:BAF,CBD,ACE是ABC的三个外角求证:BAF+CBD+ACE=360分析:把每个外角表示为与之不相邻的两个内角之和即得证证明:(略)例2、已知:D是AB上一点,E是AC上一点,BE、CD相交于
3、F,A=62,ACD=35,ABE=20求:(1)BDC度数;(2)BFD度数解:(略)活动目的: 通过三角形内角和定理直接推导三角形外角的两个推论,引导学生从内和外、相等和不等的不同角度对三角形作更全面的思考注意事项: 新的定理的推导过程应建立在学生的充分思考和论证的基础之上,教师切勿越俎代庖。第三环节:课堂练习活动内容:1 已知,如图,在三角形ABC中,AD平分外角EAC,B=C求证:ADBC分析:要证明ADBC,只需证明“同位角相等”,即需证明DAE=B.证明:EAC=B+C(三角形的一个外角等于和它不相邻的两个内角的和)B=C(已知)B=EAC(等式的性质)AD平分EAC(已知)DAE
4、=EAC(角平分线的定义)DAE=B(等量代换)ADBC(同位角相等,两直线平行)想一想,还有没有其他的证明方法呢?这个题还可以用“内错角相等,两直线平行”来证.证明:EAC=B+C(三角形的一个外角等于和它不相邻的两个内角的和)B=C(已知)C=EAC(等式的性质)AD平分EAC(已知)DAC=EAC(角平分线的定义)DAC=C(等量代换)ADBC(内错角相等,两直线平行)还可以用“同旁内角互补,两直线平行”来证.证明:EAC=B+C(三角形的一个外角等于和它不相邻的两个内角的和)B=C(已知)C=EAC(等式的性质)AD平分EAC(已知)DAC=EACDAC=C(等量代换)B+BAC+C=
5、180B+BAC+DAC=180 即:B+DAB=180ADBC(同旁内角互补,两直线平行) 已知:如图,在三角形ABC中,1是它的一个外角,E为边AC上一点,延长BC到D,连接DE求证:12证明:1是ABC的一个外角(已知)1ACB(三角形的一个外角大于任何一个和它不相邻的内角)ACB是CDE的一个外角(已知)ACB2(三角形的一个外角大于任何一个和它不相邻的内角)12(不等式的性质).如图,求证:(1)BDCA.(2)BDC=B+C+A.如果点D在线段BC的另一侧,结论会怎样?分析通过学生的探索活动,使学生进一步了解辅助线的作法及重要性,理解掌握三角形的内角和定理及推论.证法一:(1)连接
6、AD,并延长AD,如图,则1是ABD的一个外角,2是ACD的一个外角.13.24(三角形的一个外角大于任何一个和它不相邻的内角)1+23+4(不等式的性质)即:BDCBAC.(2)连结AD,并延长AD,如图.则1是ABD的一个外角,2是ACD的一个外角.1=3+B2=4+C(三角形的一个外角等于和它不相邻的两个内角的和)1+2=3+4+B+C(等式的性质)即:BDC=B+C+BAC证法二:(1)延长BD交AC于E(或延长CD交AB于E),如图.则BDC是CDE的一个外角.BDCDEC.(三角形的一个外角大于任何一个和它不相邻的内角)DEC是ABE的一个外角(已作)DECA(三角形的一个外角大于
7、任何一个和它不相邻的内角)BDCA(不等式的性质)(2)延长BD交AC于E,则BDC是DCE的一个外角.BDC=C+DEC(三角形的一个外角等于和它不相邻的两个内角的和)DEC是ABE的一个外角DEC=A+B(三角形的一个外角等于和它不相邻的两个内角的和)BDC=B+C+BAC(等量代换)活动目的: 让学生接触各种类型的几何证明题,提高逻辑推理能力,培养学生的证明思路,特别是不等关系的证明题,因为学生接触较少,因此更需要加强练习注意事项: 学生对于几何图形中的不等关系的证明比较陌生,因此有必要在证明第2小题中,要引导学生找到一个过渡角ACB,由1ACB,ACB2,再由不等关系的传递性得出12。
8、第四环节:课堂反思与小结活动内容:由学生自行归纳本节课所学知识:推论1: 三角形的一个外角等于和它不相邻的两个内角的和推论 2:三角形的一个外角大于任何一个和它不相邻的内角活动目的:复习巩固所学知识,理清思路,培养学生的归纳概括能力注意事项: 学生对于三角形外角的两个推论以及它们的应用有一定的了解。课后练习:课本第244页的随堂练习第1题,习题6.7题第1,2,3题。思考题:课本245页第4题(给学有余力的同学做)教学反思教学中,帮助学生找三角形的外角是难点,特别是当一个角是某个三角形的内角,同时又是另一个三角形的外角时,困难就更大,解决这个难点的关键是讲清定义,分析图形,变换位置,理清思路。
9、本节课的教学设计力图具有以下几个特色:(1) 充分挖掘学生的潜能,展示学生的思维过程,体现“学生是学习的主人”这一主题;(2) 从特殊到一般,从不完全归纳到合情推理,展示了一个完整的思维过程;(3) 在整个教学中尽可能的避免教学的单调性,因此编排了一题多解的训练,为发散性思维创设情境,调动学生学习的极大热情。44一次函数的应用第1课时确定一次函数的表达式1会确定正比例函数的表达式;(重点)2会确定一次函数的表达式(重点)一、情境导入某农场租用播种机播种小麦,在甲播种机播种2天后,又调来乙播种机参与播种,直至完成800亩的播种任务,播种亩数与天数之间的函数关系如图你能通过图象提供的信息求出y与x
10、之间的关系式吗?你知道乙播种机参与播种的天数是多少呢?学习了本节的内容,你就知道了二、合作探究探究点一:确定正比例函数的表达式 求正比例函数y(m4)m215的表达式解析:本题是利用正比例函数的定义来确定表达式的,即自变量的指数为1,系数不为0,这种类型简称为定义式解:由正比例函数的定义知m2151且m40,m4,y8x.方法总结:利用正比例函数的定义确定表达式:自变量的指数为1,系数不为0.探究点二:确定一次函数的表达式【类型一】 根据给定的点确定一次函数的表达式 已知一次函数的图象经过(0,5)、(2,5)两点,求一次函数的表达式解析:先设一次函数的表达式为ykxb,因为它的图象经过(0,
11、5)、(2,5)两点,所以当x0时,y5;当x2时,y5.由此可以得到两个关于k、b的方程,通过解方程即可求出待定系数k和b的值,再代回原设即可解:设一次函数的表达式为ykxb,根据题意得,解得一次函数的表达式为y5x5.方法总结:“两点式”是求一次函数表达式的基本题型二次函数ykxb中有两个待定系数k、b,因而需要知道两个点的坐标才能确定函数的关系式【类型二】 根据图象确定一次函数的表达式 正比例函数与一次函数的图象如图所示,它们的交点为A(4,3),B为一次函数的图象与y轴的交点,且OA2OB.求正比例函数与一次函数的表达式解析:根据A(4,3)可以求出正比例函数表达式,利用勾股定理可以求
12、出OA的长,从而可以求出点B的坐标,根据A、B两点的坐标可以求出一次函数的表达式解:设正比例函数的表达式为y1k1x,一次函数的表达式为y2k2xb.点A(4,3)是它们的交点,代入上述表达式中,得34k1,34k2b.k1,即正比例函数的表达式为yx.OA5,且OA2OB,OB.点B在y轴的负半轴上,B点的坐标为(0,)又点B在一次函数y2k2xb的图象上,b,代入34k2b中,得k2.一次函数的表达式为y2x.方法总结:根据图象确定一次函数的表达式的方法:从图象上选取两个已知点的坐标,然后运用待定系数法将两点的横、纵坐标代入所设表达式中求出待定系数,从而求出函数的表达式【类型三】 根据实际
13、问题确定一次函数的表达式 某商店售货时,在进价的基础上加一定利润,其数量x与售价y的关系如下表所示,请你根据表中所提供的信息,列出售价y(元)与数量x(千克)的函数关系式,并求出当数量是2.5千克时的售价.数量x/千克售价y/元180.42160.83241.24321.65402.0解析:从图表中可以看出售价由80.4依次向下扩大到2倍、3倍、解:由表中信息,得y(80.4)x8.4x,即售价y与数量x的函数关系式为y8.4x.当x2.5时,y8.42.521.所以数量是2.5千克时的售价是21元方法总结:解此类题要根据所给的条件建立数学模型,得出变化关系,并求出函数的表达式,根据函数的表达
14、式作答三、板书设计确定一次函数表达式经历对正比例函数及一次函数表达式的探求过程,掌握用待定系数法求一次函数的表达式,进一步使用数形结合的思想方法;经历从不同信息中获取一次函数表达式的过程,体会到解决问题的多样性,拓展学生的思维22平方根第1课时算术平方根1了解算术平方根的概念,会用根号表示一个数的算术平方根;(重点)2根据算术平方根的概念求出非负数的算术平方根;(重点)3了解算术平方根的性质(难点)一、情境导入上一节课我们做过:由两个边长为1的小正方形,通过剪一剪,拼一拼,得到一个边长为a的大正方形,那么有a22,a_,2是有理数,而a是无理数在前面我们学过若x2a,则a叫做x的平方,反过来x
15、叫做a的什么呢?二、合作探究探究点一:算术平方根的概念【类型一】 求一个数的算术平方根 求下列各数的算术平方根:(1)64;(2)2;(3)0.36;(4).解析:根据算术平方根的定义求非负数的算术平方根,只要找到一个非负数的平方等于这个非负数即可解:(1)8264,64的算术平方根是8;(2)()22,2的算术平方根是;(3)0.620.36,0.36的算术平方根是0.6;(4),又9281,9,而329,的算术平方根是3.方法总结:(1)求一个数的算术平方根时,首先要弄清是求哪个数的算术平方根,分清求与81的算术平方根的不同意义,不要被表面现象迷惑(2)求一个非负数的算术平方根常借助平方运
16、算,因此熟记常用平方数对求一个数的算术平方根十分有用【类型二】 利用算术平方根的定义求值 3a的算术平方根是5,求a的值解析:先根据算术平方根的定义,求出3a的值,再求a.解:因为5225,所以25的算术平方根是5,即3a25,所以a22.方法总结:已知一个数的算术平方根,可以根据平方运算来解题探究点二:算术平方根的性质【类型一】 含算术平方根式子的运算 计算:.解析:首先根据算术平方根的定义进行开方运算,再进行加减运算解:75153.方法总结:解题时容易出现如的错误【类型二】 算术平方根的非负性 已知x,y为有理数,且3(y2)20,求xy的值解析:算术平方根和完全平方式都具有非负性,即0,a20,由几个非负数相加和为0,可得每一个非负数都为0,由此可求出x和y的值,进而求得答案解:由题意可得x10,y20,所以x1,y2.所以xy121.方法总结:算术平方根、绝对值和完全平方式都具有非负性,即0,|a|0,a20,当几个非负数的和为0时,各数均为0.三、板书设计算术平方根 让学生正确、深刻地理解算术平方根的概念,需要由浅入深、不断深化概念的形成过程也是思维过程,加强概念形成过程的教学,对提高学生的思维水平是很有帮助的概念教学过程中要做到:讲清概念,加强训练,逐步深化44一次函数的应用第1课时确定一次函数的表达式
copyright@ 2008-2022 冰豆网网站版权所有
经营许可证编号:鄂ICP备2022015515号-1