ImageVerifierCode 换一换
格式:DOCX , 页数:11 ,大小:101.17KB ,
资源ID:26292053      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/26292053.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(七下数学北师大版第二章第一节教案.docx)为本站会员(b****9)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

七下数学北师大版第二章第一节教案.docx

1、七下数学北师大版第二章第一节教案七下数学北师大版第二章第一节教案2.1 两条直线的位置关系教学分析教学目标: 1、在具体的现实情境中,了解同一平面内两条直线的位置关系是平行和相交,理解对顶角、余角、补角等概念。2、探索并掌握对顶角相等、同角或等角的余角相等、同角或等角的补角相等的性质。3、进一步提高学生的抽象概括能力,发展空间观念和知识运用能力,学会简单的逻辑推理,并能对问题的结论进行合理的猜想。4、体会观察、归纳、推理对数学知识中获取数学猜想和论证的重要作用,初步数学中推理的严谨性和结论的确定性,能在独立思考和小组交流中获益。教学重难点重点:余角、补角、对顶角的性质及其应用。难点:通过简单的

2、推理,归纳出余角、补角的性质,并能用规范的语言描述性质。教学准备实物图片、ppt课件。的位置关系。【设计意图:让学生观察图片,不但可以体会到几何来源于生活,激发学生学习的兴趣,还可以为下面的分类提供依据,为了解平行线、相交线的概念打下基础。】二、建立模型,探索新知互动探究一、平行线、相交线的概念:师生活动:1、请各组同学每人拿出两支笔,用它们代表两条直线,随意移动笔,观察笔与笔有几种位置关系?各种位置关系,分别叫做什么?(选取一个小组的代表上黑板上演示给大家看)(板书:平行、相交、重合,并给出相交线的定义)若两条直线只有一个公共点,我们称这两条直线为相交线。2、凡未作特别说明,我们只研究不重合

3、的情形,则去掉重合这种情况,在同一平面上两条直线有几种位置关系?(板书:去掉重合,并总结出同一平面内的两条直线的位置关系)同一平面内的两条直线的位置关系有平行和相交两种。3、若两直线不相交,则这两条直线在同一平面内是什么位置关系?板书:(留空)不相交的两条直线叫做平行线。4、出示立方体框架,谁能指出立方体框架中哪些棱既不平行也不相交呢?为什么? 5、在留空之处用彩色粉笔填上“在同一平面内。”6、那么理解平行线时,必须注意什么? 重点给学生强调平行线的三层意思: (1)“在同一平面”是前提条件; (2)“不相交”是指两条直线没有交点; (3)平行线指的是“两条直线”而不是两条射线或两条线段(有时

4、我们也说两条射线或两条线段平行,这实际上市指它们所在的直线平行)。【设计意图:让学生用两支笔动手操作,不但培养了学生的动手能力,还能让学生更深层次的体会到平行线的含义,进一步明确同一平面内两条直线的位置关系。】互动探究二、对顶角的概念和性质:教师活动:进入七年级学习以来,大家都有这样的感受:“生活中处处有-数学。”现在请各位同学看一组生活中的图片,你们觉得这些图片有什么共同点吗?(多媒体展示X型晾衣架、栅栏、剪刀、小孔成像原理等图片)(教师板书,给出对顶角定义) 两个角的两边互为反向延长线,则这两个角叫做对顶角。教师应关注:(1)对顶角只有在两条直线相交时才出现。 (2)对顶角是指两个角的位置

5、关系。学生活动:在纸上任意画两条相交直线,分别度量所成的四个角的大小,你发现形成对顶角的两个角的大小有什么关系?学生动手操作,自己得出结论,教师板书对顶角的性质: 对顶角相等。牛刀小试:1、如图2,图中共有_对对顶角.答案:4.互动探究三、余角、补角的概念和性质:学生活动:(教师演示ppt)计算:(1)44+ 46= ; (2)302034+ 593926= ;(3)10+ 25+ 55= ; (4)96+ 84= ;(5)5845+ 12115= ; (6)50+ 75+ 55= 。答案:都填90。学生计算并回答,总结它们的特点.教师判断对错.教师应关注:(1)计算的准确性(2)学生是否认真

6、观察并思考【设计意图:通过计算复习上节课的知识,设置悬念,调动学生的积极性,更进一步促使渴望尽快的寻求到答案,同时也为判断余角和补角做铺垫。】师生活动:A:出示一组互余角 B:出示一组互补角教师演示ppt互为余角.学生通过观察,回答教师提出的问题.师生总结互为余角的概念.然后,类比互为余角学习互为补角的概念.如果两个角的和是90,那么称这两个角互为余角。如果两个角的和是180,那么称这两个角互为补角。教师应关注:(1)学生的语言表达.(2)学生是否能独立思考并积极参与到数学的问题中.(3)学生是否真正理解了这两个概念.【设计意图:教师演示,让学生通过观察,从直观的角度去感受互为余角、补角的概念

7、.并用语言去表达这两个概念,培养口语表达能力. 】牛刀小试:2、填表:的余角的补角326223x从中,你发现一个锐角的补角比它的余角大_.答案:表格第一行:58,148;第二行:2737,11737;第三行:90- x,180- x; 空格:90。3、判断。(1)一个角有余角也一定有补角.( )(2)一个角有补角也一定有余角. ( )(3)一个角的补角一定大于这个角.( )答案:(1);(2);(3)。学生计算并回答,对照答案,教师根据回答给以评价.教师应关注:(1)计算的准确性.(2)是否会用含有未知数的式子表示余角和补角,是否准确理解概念.【设计意图:通过利用余角和补角的概念来进行计算,一

8、方面检查是否理解概念;另一方面培养计算能力.】学生活动:图31、如图3,1与2互余,3与4互余,如果1=3,那么2与4相等吗?为什么?你能用一句话概括这一规律吗?2、如图4,如果1与2互补,3与4互补,13,那么2与4有什么关系?为什么?学生分组进行讨论,交流并让代表发言.教师让学生猜想、简单说理、得出结论.根据回答进行引导,并给以积极的评价.并让学生反思这个过程. 教师提出问题,学生类比余角的性质独立解决该问题.教师应关注:(1)学生语言是否准确、规范.(2)几何语言的表达是否准确、规范.(3)思维是否清晰.同角或等角的余角相等。同角或等角的补角相等。【设计意图:学生有了探究余角的经验,会主

9、动迁移到补角上来,类比余角的性质进行自主探究,从而达到“由扶到放”的目的.从而培养学生独立思考的习惯,以及迁移知识的能力.】例1、已知一个角的补角是它的余角的4倍,求这个角的度数.分析:可以利用方程思想解决这道题。解:设这个角为x,则180 x = 4(90 - x), x = 60.答:这个角是60。【设计意图:本例题不但考查学生对概念的理解,同时也渗透方程的思想.学生感觉到几何问题用方程解决更简单.】牛刀小试:4、如图5,E、F是直线DG上两点,1 = 2,3 = 4 = 90 ,找出图中相等的角并说明理由.答案:5 = 6,理由是:等角的余角相等。本题相对复杂,为了更好让学生得到发展,先

10、让学生独立思考,然后在进行交流.教师给以评价. 【设计意图:本题是利用余角的性质解决,学生经历“独立思考交流结论”这样一个过程,既培养独立的意识,又有合作.既充分发表个人的见解,让他们体验成功,又锻炼了口语表达.】:5、如图6,已知AOB是一直线,OC是AOB的平分线, DOE是直角,图中哪些角互余?哪些角互补?哪些角相等?答案:互余:1与2,1与4,2与3,4与3; 互补:1与EOB,3与EOB,4与AOD,2与AOD,AOC与BOC, AOC与DOE,BOC与DOE。 相等:AOC=BOC=DOE,1=3,2=4。教师应关注:(1)学生对余角和补角概念的理解,是否会用含有未知数的代数式表示

11、一个角的余角和补角.(2)学生是否真正理解余角的性质,并能在具体的问题中进行应用.学生的几何语言是否规范、标准.【设计意图:本题是利用余角和补角的性质、角的平分线和直角定义来解决,学生充分运用所学知识来尝试解决,先独立思考,然后一起讨论,培养学生独立思考的习惯、合作交流的意识,又从多个角度了解、认识这个问题,从而真正做到理解.】三、归纳小结,认知升华:学生思考,谈自己的收获和体会.教师给以补充.总结一下内容:1、同一平面内两条直线的位置关系:平行、相交。2、概念:(1)对顶角;(2)余角;(3)补角.3、性质:(1)对顶角性质;(2)余角性质;(3)补角性质。四、巩固新知,学以致用:教材第42

12、页习题2.1。五、布置作业,分层训练:必做作业:教科书第37页1,2,3选做作业:1、在下列4个判断中: 在同一平面内,不相交的两条线段一定平行;不相交的两条直线一定平行;在同一平面内,不平行的两条射线一定相交;在同一平面内,不平行的两条直线一定相交.其中正确的个数是 ( ) A.4 B.3 C.2 D.12、如图所示,1与2是对顶角的是( ) A 1 2 B 1 C 1 D 1 2 2 2 3、如果A3518,那么A的余角等于 ;A的补角等于 。4、如果一个角的补角是150,那么这个角的余角的度数是 。5、已知与互补,且与是对顶角,则=_。6、已知且与互余,与互余,则的余角和补角的度数分别为

13、_.7、一个角的补角比这个角的余角的3倍还大10度,求这个角的度数。答案:1、D; 2、D; 3、5442,14442; 4、60; 5、90; 6、24,114; 7、50;课后评析教学反思本课教学是非常成功的一节课,学生的积极性、主动性完全崩发,整个课堂完全就是和谐统一的有机整体. 细细思想从中得出:对于新旧知识具有类似的内容可以用类比的方法,这样省时高效;对于几何的命题的验证,可通过多种方法证明,如本节的“等角的余角相等”,可以通过测量、叠合法、逻辑证明,这样可以让不同的学生得到清晰而深刻的理解;更重要的是通过本课学习知道说明一个几何命题的过程是怎样的,须经历“猜想推理结论”这样一个过程,为以后的学习做了铺垫.

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1