1、人教版部编初中九年级数学上册第二章第3节用公式法求解一元二次方程教学设计WORD第二章 一元二次方程用公式法求解一元二次方程(一)一、学生知识状况分析学生的知识技能基础:学生通过前几节课的学习,认识了一元二次方程的一般形式:ax2+bx+c=0(a0),并且已经能够熟练地将一元二次方程化成它们的一般形式;在上一节课的基础上,大部分学生能够利用配方法解一元二次方程,但仍有一部分认知较慢、运算不扎实的同学不能够熟练使用配方法解一元二次方程.学生活动经验基础:学生已经具备利用配方法解一元二次方程的经验;学生通过规律的探求、勾股定理的探求、一次函数的图像中一次函数增减性的总结等章节的学习,已经逐渐形成
2、对于一些规律性的问题,用公式加以归纳总结的数学建模意识,并且已经具备本节课所需要的推理技能和逻辑思维能力.二、教学任务分析公式法实际上是配方法的一般化和程式化,然后再利用总结出来的公式更加便利地求解一元二次方程。所以首先要夯实上节课的配方法,在此基础上再进行一般规律性的探求推导求根公式,最后,用公式法解一元二次方程。其中,引导学生自主的探索,正确地导出一元二次方程的求根公式是本节课的重点、难点之一;正确、熟练地使用一元二次方程的求根公式解方程,提高学生的综合运算能力是本节课的另一个重点和难点。为此,本节课的教学目标是:在教师的指导下,学生能够正确的导出一元二次方程的求根公式,并在探求过程中培养
3、学生的数学建模意识和合情推理能力。能够根据方程的系数,判断出方程的根的情况,在此过程中,培养学生观察和总结的能力.通过正确、熟练的使用求根公式解一元二次方程,提高学生的综合运算能力。通过在探求公式过程中同学间的交流、使用公式过程中的小技巧的交流,进一步发展学生合作交流的意识和能力三、教学过程分析本课时分为以下五个教学环节:第一环节:回忆巩固;第二环节:探究新知;第三环节:巩固新知;第四环节:收获与感悟;第五环节:布置作业。第一环节;回忆巩固活动内容:用配方法解下列方程:(1)2x2+3=7x (2)3x2+2x+1=0全班同学在练习本上运算,可找位同学上黑板演算由学生总结用配方法解方程的一般方
4、法:第一题: 2x2+3=7x解:将方程化成一般形式: 2x2-7x +3=0 两边都除以一次项系数:2 配方:加上再减去一次项系数一半的平方 即: 两边开平方取“” 得: 写出方程的根 x1=3 , x2=第二题: 3x2+2x+1=0解:两边都除以一次项系数:3 配方:加上再减去一次项系数一半的平方 即: 原方程无解活动目的:(1)进一步夯实用配方法解方程的一般步骤.在这里相对于书上的解题方法作了小小的改动:没有把常数项移到方程右边,而是在方程的左边直接加上再减去一次项系数一半的平方,这样做的目的是为了与以后二次函数一般式化顶点式保持一致。(2)选择了一个没有解的方程,让学生切实感受并不是
5、所有的一元二次方程在实数范围内都有解。(3)教师还可以根据上节课作业情况,选学生出错多的题目纠错、练习.活动的实际效果:通过对旧知识的回顾,学生再次经历了配方法解方程的全过程,由于是旧知识,学生容易做出正确答案,并获得成功的喜悦,调动了学生的学习热情,唤醒学生的思维,为后面的探索奠定了良好的基础。第二环节 探究新知(1)活动1:自主推导求根公式。提出问题:解一元二次方程:ax2+bx+c=0(a0)学生在演算纸上自主推导、并针对自己推导过程中预见的问题在小范围内自由研讨。最后由师生共同归纳、总结,得出求根公式.解:两边都除以一次项系数:a 问:为什么可以两边都除以一次项系数:a 答:因为a0
6、配方:加上再减去一次项系数一半的平方 即: 问:现在可以两边开平方吗? 答:不可以,因为不能保证 问:什么情况下 学生讨论后回答: 答: a0 4a20要使只要 b2-4ac0即可当b2-4ac0时,两边开平方取“” 得: 问:如果b2-4ac0写出方程的根 即x1=3,x2=-问:与第一环节中的第(1)题对比,哪种解法更简捷?例:解方程 9x2+6x+1=0确定a,b,c的值 解:a=9, b=6, c=1判断方程是否有根 b2-4ac=62-491=0 (剩下的题目教师根据时间情况选择使用,个别学生上黑板做题,其他同学在座位上练习)、课本随堂练习1、2.活动目的:通过让学生或口述交流或上黑
7、板解方程,公示学生的思维过程,查缺补漏,了解学生的掌握情况和灵活运用所学知识的程度。活动实际效果:教师引导学生分析,学生口答、板书,笔答,对比,评价,总结大部分学生能够正确、熟练的用公式法解方程。 第四环节:收获与感悟活动内容: 提出问题:1、一元二次方程ax2+bx+c=0(a0)的求根公式是什么?2、如何判断一元二次方程根的情况?3、用公式法解方程应注意的问题是什么?4、你在解方程的过程中有哪些小技巧?让学生在四人小组中进行回顾与反思后,进行组间交流发言。活动目的:鼓励学生回顾本节课知识方面有哪些收获,解题技能方面有哪些提高,通过回顾进一步巩固知识,将新知识纳入到学生个人已有的知识体系中。活动实际效果:学生通过回顾本节课的学习,感受到公式推导的全过程,发展了逻辑思维能力,提高了推理技能,在使用公式解方程的过程中,感受到有的一元二次方程的有根,而有的没有根,通过解方程,进一步提高了学生的运算能力。
copyright@ 2008-2022 冰豆网网站版权所有
经营许可证编号:鄂ICP备2022015515号-1