ImageVerifierCode 换一换
格式:DOCX , 页数:12 ,大小:69.37KB ,
资源ID:25516211      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/25516211.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(高中 排列组合 知识点+例题 全面分类.docx)为本站会员(b****9)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

高中 排列组合 知识点+例题 全面分类.docx

1、高中 排列组合 知识点+例题 全面分类辅导讲义排列组合教学内容1分类加法计数原理完成一件事有n类不同的方案,在第一类方案中有m1种不同的方法,在第二类方案中有m2种不同的方法,在第n类方案中有mn种不同的方法,则完成这件事共有Nm1m2mn种不同的方法2分步乘法计数原理完成一件事需要分成n个不同的步骤,完成第一步有m1种不同的方法,完成第二步有m2种不同的方法,完成第n步有mn种不同的方法,那么完成这件事共有Nm1m2mn种不同的方法3分类加法计数原理与分步乘法计数原理,都涉及完成一件事的不同方法的种数它们的区别在于:分类加法计数原理与分类有关,各种方法相互独立,用其中的任一种方法都可以完成这

2、件事;分步乘法计数原理与分步有关,各个步骤相互依存,只有各个步骤都完成了,这件事才算完成1三个人踢毽子,互相传递,每人每次只能踢一下由甲开始踢,经过3次传递后,毽子又被踢回给甲则不同的传递方式共有()A5种 B2种 C3种 D4种2用0,1,9十个数字,可以组成有重复数字的三位数的个数为()A243 B252 C261 D2793满足a,b1,0,1,2,且关于x的方程ax22xb0有实数解的有序数对(a,b)的个数为()A14 B13 C12 D104用数字2,3组成四位数,且数字2,3至少都出现一次,这样的四位数共有_个(用数字作答)题型一分类加法计数原理的应用例1高三一班有学生50人,男

3、生30人,女生20人;高三二班有学生60人,男生30人,女生30人;高三三班有学生55人,男生35人,女生20人(1)从高三一班或二班或三班中选一名学生任学生会主席,有多少种不同的选法?(2)从高三一班、二班男生中,或从高三三班女生中选一名学生任学生会体育部长,有多少种不同的选法?在所有的两位数中,个位数字大于十位数字的两位数共有多少个?题型二分步乘法计数原理的应用例2有六名同学报名参加三个智力竞赛项目,在下列情况下各有多少种不同的报名方法?(不一定六名同学都能参加)(1)每人恰好参加一项,每项人数不限;(2)每项限报一人,且每人至多参加一项;(3)每项限报一人,但每人参加的项目不限思维升华(

4、1)利用分步乘法计数原理解决问题要按事件发生的过程合理分步,即分步是有先后顺序的,并且分步必须满足:完成一件事的各个步骤是相互依存的,只有各个步骤都完成了,才算完成这件事(2)分步必须满足两个条件:一是步骤互相独立,互不干扰;二是步与步确保连续,逐步完成已知集合M3,2,1,0,1,2,若a,b,cM,则:(1)yax2bxc可以表示多少个不同的二次函数;(2)yax2bxc可以表示多少个图象开口向上的二次函数题型三两个原理的综合应用例3如图所示,将一个四棱锥的每一个顶点染上一种颜色,并使同一条棱上的两端异色,如果只有5种颜色可供使用,求不同的染色方法总数如图,正五边形ABCDE中,若把顶点A

5、、B、C、D、E染上红、黄、绿三种颜色中的一种,使得相邻顶点所染颜色不相同,则不同的染色方法共有()A30种 B27种C24种 D21种 方法与技巧1分类加法和分步乘法计数原理,区别在于:分类加法计数原理针对“分类”问题,其中各种方法相互独立,用其中任何一种方法都可以做完这件事;分步乘法计数原理针对“分步”问题,各个步骤相互依存,只有各个步骤都完成了才算完成这件事2分类标准要明确,做到不重复不遗漏3混合问题一般是先分类再分步4要恰当画出示意图或树状图,使问题的分析更直观、清楚,便于探索规律失误与防范1切实理解“完成一件事”的含义,以确定需要分类还是需要分步进行2分类的关键在于要做到“不重不漏”

6、,分步的关键在于要正确设计分步的程序,即合理分类,准确分步3确定题目中是否有特殊条件限制A组专项基础训练1从集合1,2,3,10中任意选出三个不同的数,使这三个数成等比数列,这样的等比数列的个数为()A3 B4 C6 D82小明有4枚完全相同的硬币,每个硬币都分正反两面他想把4个硬币摆成一摞,且满足相邻两枚硬币的正面与正面不相对,不同的摆法有()A4种 B5种 C6种 D9种3集合Px,1,Qy,1,2,其中x,y1,2,3,9,且PQ.把满足上述条件的一对有序整数对(x,y)作为一个点的坐标,则这样的点的个数是()A9 B14 C15 D214从1,3,5,7,9这五个数中,每次取出两个不同

7、的数分别记为a,b,共可得到lg alg b的不同值的个数是()A9 B10 C18 D205从2、1、0、1、2、3这六个数字中任选3个不重复的数字作为二次函数yax2bxc的系数a、b、c,则可以组成顶点在第一象限且过原点的抛物线条数为()A6 B20 C100 D120.B组专项能力提升1已知集合M1,2,3,N1,2,3,4,定义函数f:MN.若点A(1,f(1)、B(2,f(2)、C(3,f(3),ABC的外接圆圆心为D,且(R),则满足条件的函数f(x)有()A6种 B10种 C12种 D16种2直角坐标xOy平面上,平行直线xn(n0,1,2,5)与平行直线yn(n0,1,2,5

8、)组成的图形中,矩形共有()A25个 B36个 C100个 D225个3.如图,一环形花坛分成A,B,C,D四块,现有4种不同的花供选种,要求在每块里种1种花,且相邻的2块种不同的花,则不同的种法总数为()A96 B84 C60 D484五名学生报名参加四项体育比赛,每人限报一项,则报名方法的种数为_五名学生争夺四项比赛的冠军(冠军不并列),获得冠军的可能性有_种 1排列与组合的概念名称定义排列从n个不同元素中取出m(mn)个元素按照一定的顺序排成一列组合合成一组2.排列数与组合数(1)排列数的定义:从n个不同元素中取出m(mn)个元素的所有不同排列的个数叫做从n个不同元素中取出m个元素的排列

9、数,用A表示(2)组合数的定义:从n个不同元素中取出m(mn)个元素的所有不同组合的个数,叫做从n个不同元素中取出m个元素的组合数,用C表示3排列数、组合数的公式及性质公式(1)An(n1)(n2)(nm1)(2)C性质(1)0!1;An!. (2)CC;CCC.1用数字1、2、3、4、5组成的无重复数字的四位偶数的个数为()A8 B24 C48 D12026把椅子摆成一排,3人随机就座,任何两人不相邻的坐法种数为()A144 B120 C72 D243将字母a,a,b,b,c,c排成三行两列,要求每行的字母互不相同,每列的字母也互不相同,则不同的排列方法共有()4某班级要从4名男生、2名女生

10、中选派4人参加某次社区服务,如果要求至少有1名女生,那么不同的选派方案有_种题型一排列问题例1有4名男生、5名女生,全体排成一行,问下列情形各有多少种不同的排法?(1)甲不在中间也不在两端;(2)甲、乙两人必须排在两端;(3)男女相间由0,1,2,3,4,5这六个数字组成的无重复数字的自然数,求:(1)有多少个含有2,3,但它们不相邻的五位数?(2)有多少个数字1,2,3必须由大到小顺序排列的六位数?题型二组合问题例2某市工商局对35种商品进行抽样检查,已知其中有15种假货现从35种商品中选取3种(1)其中某一种假货必须在内,不同的取法有多少种?(2)其中某一种假货不能在内,不同的取法有多少种

11、?(3)恰有2种假货在内,不同的取法有多少种?(4)至少有2种假货在内,不同的取法有多少种?(5)至多有2种假货在内,不同的取法有多少种?从10位学生中选出5人参加数学竞赛(1)甲必须入选的有多少种不同的选法?(2)甲、乙、丙不能同时都入选的有多少种不同的选法?题型三排列与组合的综合应用问题例34个不同的球,4个不同的盒子,把球全部放入盒内(1)恰有1个盒不放球,共有几种放法?(2)恰有1个盒内有2个球,共有几种放法?(3)恰有2个盒不放球,共有几种放法?思维升华排列、组合综合题目,一般是将符合要求的元素取出(组合)或进行分组,再对取出的元素或分好的组进行排列其中分组时,要注意“平均分组”与“

12、不平均分组”的差异及分类的标准(1)将标号为1,2,3,4,5,6的6张卡片放入3个不同的信封中若每个信封放2张,其中标号为1,2的卡片放入同一信封,则不同的放法共有()A12种 B18种 C36种 D54种(2)(2014重庆)某次联欢会要安排3个歌舞类节目,2个小品类节目和1个相声类节目的演出顺序,则同类节目不相邻的排法种数是()A72 B120C144 D168排列、组合问题计算重、漏致误典例:有20个零件,其中16个一等品,4个二等品,若从20个零件中任意取3个,那么至少有1个一等品的不同取法有_种温馨提醒(1)排列、组合问题由于其思想方法独特,计算量庞大,对结果的检验困难,所以在解决

13、这类问题时就要遵循一定的解题原则,如特殊元素、位置优先原则、先取后排原则、先分组后分配原则、正难则反原则等,只有这样我们才能有明确的解题方向同时解答组合问题时必须心思细腻,考虑周全,这样才能做到不重不漏,正确解题(2)“至少、至多”型问题不能利用分步乘法计数原理求解,多采用分类求解或转化为它的对立事件求解方法与技巧1对于有附加条件的排列、组合应用题,通常从三个途径考虑:(1)以元素为主考虑,即先满足特殊元素的要求,再考虑其他元素;(2)以位置为主考虑,即先满足特殊位置的要求,再考虑其他位置;(3)先不考虑附加条件,计算出排列数或组合数,再减去不合要求的排列数或组合数2排列、组合问题的求解方法与

14、技巧:(1)特殊元素优先安排;(2)合理分类与准确分步;(3)排列、组合混合问题先选后排;(4)相邻问题捆绑处理;(5)不相邻问题插空处理;(6)定序问题排除法处理;(7)分排问题直排处理;(8)“小集团”排列问题先整体后局部;(9)构造模型;(10)正难则反,等价条件失误与防范求解排列与组合问题的三个注意点:(1)解排列与组合综合题一般是先选后排,或充分利用元素的性质进行分类、分步,再利用两个原理做最后处理(2)解受条件限制的组合题,通常用直接法(合理分类)和间接法(排除法)来解决,分类标准应统一,避免出现重复或遗漏(3)对于选择题要谨慎处理,注意等价答案的不同形式,处理这类选择题可采用排除

15、法分析选项,错误的答案都有重复或遗漏的问题.A组专项基础训练1六个人从左至右排成一行,最左端只能排甲或乙,最右端不能排甲,则不同的排法共有()A192种 B216种C240种 D288种2将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师和2名学生组成,不同的安排方案共有()A12种 B10种 C9种 D8种310名同学合影,站成了前排3人,后排7人现摄影师要从后排7人中抽2人站前排,其他人的相对顺序不变,则不同调整方法的种数为()ACA BCA CCA DCA4某台小型晚会由6个节目组成,演出顺序有如下要求:节目甲必须排在前两位,节目乙不能排在第一位,

16、节目丙必须排在最后一位该台晚会节目演出顺序的编排方案共有()A36种 B42种 C48种 D54种5如图所示,要使电路接通,开关不同的开闭方式有()A11种 B20种 C21种 D12种6A、B、C、D、E五人并排站成一排,如果B必须站在A的右边(A、B可以不相邻),那么不同的排法共有_种7将序号分别为1,2,3,4,5的5张参观券全部分给4人,每人至少1张,如果分给同一人的2张参观券连号,那么不同的分法种数是_8用1,2,3,4这四个数字组成无重复数字的四位数,其中恰有一个偶数夹在两个奇数之间的四位数的个数为_9某商店要求甲、乙、丙、丁、戊五种不同的商品在货架上排成一排,其中甲、乙两种必须排

17、在一起,而丙、丁两种不能排在一起,不同的排法共有_种10有9名学生,其中2名会下象棋但不会下围棋,3名会下围棋但不会下象棋,4名既会下围棋又会下象棋;现在要从这9名学生中选出2名学生,一名参加象棋比赛,另一名参加围棋比赛,共有多少种不同的选派方法?B组专项能力提升(时间:15分钟)11我国第一艘航母“辽宁舰”在某次舰载机起降飞行训练中,有5架舰载机准备着舰如果甲、乙两机必须相邻着舰,而丙、丁不能相邻着舰,那么不同的着舰方法有()A12种 B18种 C24种 D48种12设集合A(x1,x2,x3,x4,x5)|xi1,0,1,i1,2,3,4,5,那么集合A中满足条件“1|x1|x2|x3|x4|x5|3”的元素个数为()13将A、B、C、D、E、F六个字母排成一排,且A、B均在C的同侧,则不同的排法共有_种(用数字作答)14(2014浙江)在8张奖券中有一、二、三等奖各1张,其余5张无奖将这8张奖券分配给4个人,每人2张,不同的获奖情况有_种(用数字作答)157名师生站成一排照相留念,其中老师1人,男生4人,女生2人,在下列情况下,各有不同站法多少种?(1)两个女生必须相邻而站;(2)4名男生互不相邻;(3)老师不站中间,女生甲不站左端

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1