ImageVerifierCode 换一换
格式:DOCX , 页数:22 ,大小:241.67KB ,
资源ID:25481166      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/25481166.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(动量守恒定律和应用.docx)为本站会员(b****9)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

动量守恒定律和应用.docx

1、动量守恒定律和应用动量守恒定律及其应用一、动量守恒定律1动量守恒定律的容一个系统不受外力或者受外力之和为零,这个系统的总动量保持不变。 即: 守恒是指整个过程任意时刻相等(时时相等,类比匀速) 定律适用于宏观和微观高速和低速2动量守恒定律成立的条件系统不受外力或者所受外力之和为零;系统受外力,但外力远小于力,可以忽略不计;系统在某一个方向上所受的合外力为零,则该方向上动量守恒。3动量守恒定律的表达形式(1),即p1+p2=p1/+p2/,(2)p1+p2=0,p1= -p24、理解:正方向同参同系微观和宏观都适用5动量守恒定律的重要意义从现代物理学的理论高度来认识,动量守恒定律是物理学中最基本

2、的普适原理之一。(另一个最基本的普适原理就是能量守恒定律。)从科学实践的角度来看,迄今为止,人们尚未发现动量守恒定律有任何例外。5应用动量守恒定律解决问题的基本思路和一般方法(1)分析题意,明确研究对象.在分析相互作用的物体总动量是否守恒时,通常把这些被研究的物体总称为系统.(2)要对各阶段所选系统的物体进行受力分析,弄清哪些是系统部物体之间相互作用的力,哪些是系统外物体对系统物体作用的外力.在受力分析的基础上根据动量守恒定律条件,判断能否应用动量守恒。(3)明确所研究的相互作用过程,确定过程的始、末状态,即系统各个物体的初动量和末动量的量值或表达式。注意:在研究地面上物体间相互作用的过程时,

3、各物体的速度均应取地球为参考系。(4)确定好正方向建立动量守恒方程求解。二、动量守恒定律的应用1碰撞两个物体在极短时间发生相互作用,这种情况称为碰撞。由于作用时间极短,一般都满足力远大于外力,所以可以认为系统的动量守恒。碰撞又分弹性碰撞、非弹性碰撞、完全非弹性碰撞三种。仔细分析一下碰撞的全过程:设光滑水平面上,质量为m1的物体A以速度v1向质量为m2的静止物体B运动,B的左端连有轻弹簧。在位置A、B刚好接触,弹簧开始被压缩,A开始减速,B开始加速;到位置A、B速度刚好相等(设为v),弹簧被压缩到最短;再往后A、B开始远离,弹簧开始恢复原长,到位置弹簧刚好为原长,A、B分开,这时A、B的速度分别

4、为。全过程系统动量一定是守恒的;而机械能是否守恒就要看弹簧的弹性如何了。(1)弹簧是完全弹性的。系统动能减少全部转化为弹性势能,状态系统动能最小而弹性势能最大;弹性势能减少全部转化为动能;因此、状态系统动能相等。这种碰撞叫做弹性碰撞。由动量守恒和能量守恒可以证明A、B的最终速度分别为:。(这个结论最好背下来,以后经常要用到。)(2)弹簧不是完全弹性的。系统动能减少,一部分转化为弹性势能,一部分转化为能,状态系统动能仍和相同,弹性势能仍最大,但比小;弹性势能减少,部分转化为动能,部分转化为能;因为全过程系统动能有损失(一部分动能转化为能)。这种碰撞叫非弹性碰撞。(3)弹簧完全没有弹性。系统动能减

5、少全部转化为能,状态系统动能仍和相同,但没有弹性势能;由于没有弹性,A、B不再分开,而是共同运动,不再有过程。这种碰撞叫完全非弹性碰撞。可以证明,A、B最终的共同速度为。在完全非弹性碰撞过程中,系统的动能损失最大,为:。【例1】 质量为M的楔形物块上有圆弧轨道,静止在水平面上。质量为m的小球以速度v1向物块运动。不计一切摩擦,圆弧小于90且足够长。求小球能上升到的最大高度H 和物块的最终速度v。解析:系统水平方向动量守恒,全过程机械能也守恒。小球上升过程中,由水平系统动量守恒得:由系统机械能守恒得: 解得全过程系统水平动量守恒,机械能守恒,得【例2】 动量分别为5kg m/s和6kg m/s的

6、小球A、B沿光滑平面上的同一条直线同向运动,A追上B并发生碰撞后。若已知碰撞后A的动量减小了2kg m/s,而方向不变,那么A、B质量之比的可能围是什么?解析:A能追上B,说明碰前vAvB,;碰后A的速度不大于B的速度, ;又因为碰撞过程系统动能不会增加, ,由以上不等式组解得:点评:此类碰撞问题要考虑三个因素:碰撞中系统动量守恒;碰撞过程中系统动能不增加;碰前碰后两个物体位置关系(不穿越)和速度大小应保证其顺序合理。2子弹打木块类问题子弹打木块实际上是一种完全非弹性碰撞。作为一个典型,它的特点是:子弹以水平速度射向原来静止的木块,并留在木块中跟木块共同运动。下面从动量、能量和牛顿运动定律等多

7、个角度来分析这一过程。【例3】 设质量为m的子弹以初速度v0射向静止在光滑水平面上的质量为M的木块,并留在木块中不再射出,子弹钻入木块深度为d。求木块对子弹的平均阻力的大小和该过程中木块前进的距离。解析:子弹和木块最后共同运动,相当于完全非弹性碰撞。从动量的角度看,子弹射入木块过程中系统动量守恒:从能量的角度看,该过程系统损失的动能全部转化为系统的能。设平均阻力大小为f,设子弹、木块的位移大小分别为s1、s2,如图所示,显然有s1-s2=d对子弹用动能定理: 对木块用动能定理: 、相减得: 点评:这个式子的物理意义是:f d恰好等于系统动能的损失;根据能量守恒定律,系统动能的损失应该等于系统能

8、的增加;可见,即两物体由于相对运动而摩擦产生的热(机械能转化为能),等于摩擦力大小与两物体相对滑动的路程的乘积(由于摩擦力是耗散力,摩擦生热跟路径有关,所以这里应该用路程,而不是用位移)。 由上式不难求得平均阻力的大小:至于木块前进的距离s2,可以由以上、相比得出:从牛顿运动定律和运动学公式出发,也可以得出同样的结论。由于子弹和木块都在恒力作用下做匀变速运动,位移与平均速度成正比: 一般情况下,所以s2d。这说明,在子弹射入木块过程中,木块的位移很小,可以忽略不计。这就为分阶段处理问题提供了依据。象这种运动物体与静止物体相互作用,动量守恒,最后共同运动的类型,全过程动能的损失量可用公式:当子弹

9、速度很大时,可能射穿木块,这时末状态子弹和木块的速度大小不再相等,但穿透过程中系统动量仍然守恒,系统动能损失仍然是EK= f d(这里的d为木块的厚度),但由于末状态子弹和木块速度不相等,所以不能再用式计算EK的大小。3反冲问题在某些情况下,原来系统物体具有相同的速度,发生相互作用后各部分的末速度不再相同而分开。这类问题相互作用过程中系统的动能增大,有其它能向动能转化。可以把这类问题统称为反冲。【例4】 质量为m的人站在质量为M,长为L的静止小船的右端,小船的左端靠在岸边。当他向左走到船的左端时,船左端离岸多远?解析:先画出示意图。人、船系统动量守恒,总动量始终为零,所以人、船动量大小始终相等

10、。从图中可以看出,人、船的位移大小之和等于L。设人、船位移大小分别为l1、l2,则:mv1=Mv2,两边同乘时间t,ml1=Ml2,而l1+l2=L,点评:应该注意到:此结论与人在船上行走的速度大小无关。不论是匀速行走还是变速行走,甚至往返行走,只要人最终到达船的左端,那么结论都是相同的。以上列举的人、船模型的前提是系统初动量为零。如果发生相互作用前系统就具有一定的动量,就不能再用m1v1=m2v2这种形式列方程,而要用(m1+m2)v0= m1v1+ m2v2列式。【例5】 总质量为M的火箭模型 从飞机上释放时的速度为v0,速度方向水平。火箭向后以相对于地面的速率u喷出质量为m的燃气后,火箭

11、本身的速度变为多大?解析:火箭喷出燃气前后系统动量守恒。喷出燃气后火箭剩余质量变为M-m,以v0方向为正方向,4爆炸类问题【例6】 抛出的手雷在最高点时水平速度为10m/s,这时突然炸成两块,其中大块质量300g仍按原方向飞行,其速度测得为50m/s,另一小块质量为200g,求它的速度的大小和方向。分析:手雷在空中爆炸时所受合外力应是它受到的重力G=( m1+m2 )g,可见系统的动量并不守恒。但在爆炸瞬间,力远大于外力时,外力可以不计,系统动量近似守恒。设手雷原飞行方向为正方向,则整体初速度;m1=0.3kg的大块速度为m/s、m2=0.2kg的小块速度为,方向不清,暂设为正方向。由动量守恒

12、定律:m/s此结果表明,质量为200克的部分以50m/s的速度向反方向运动,其中负号表示与所设正方向相反5某一方向上的动量守恒【例7】 如图所示,AB为一光滑水平横杆,杆上套一质量为M的小圆环,环上系一长为L质量不计的细绳,绳的另一端拴一质量为m的小球,现将绳拉直,且与AB平行,由静止释放小球,则当线绳与A B成角时,圆环移动的距离是多少?解析:虽然小球、细绳及圆环在运动过程中合外力不为零(杆的支持力与两圆环及小球的重力之和不相等)系统动量不守恒,但是系统在水平方向不受外力,因而水平动量守恒。设细绳与AB成角时小球的水平速度为v,圆环的水平速度为V,则由水平动量守恒有:MV=mv且在任意时刻或

13、位置V与v均满足这一关系,加之时间相同,公式中的V和v可分别用其水平位移替代,则上式可写为:Md=m(L-Lcos)-d解得圆环移动的距离: d=mL(1-cos)/(M+m)6物块与平板间的相对滑动【例8】如图所示,一质量为M的平板车B放在光滑水平面上,在其右端放一质量为m的小木块A,mM,A、B间动摩擦因数为,现给A和B以大小相等、方向相反的初速度v0,使A开始向左运动,B开始向右运动,最后A不会滑离B,求:(1)A、B最后的速度大小和方向;(2)从地面上看,小木块向左运动到离出发点最远处时,平板车向右运动位移大小。解析:(1)由A、B系统动量守恒定律得:Mv0-mv0=(M+m)v 所以

14、v=v0 方向向右(2)A向左运动速度减为零时,到达最远处,此时板车移动位移为s,速度为v,则由动量守恒定律得:Mv0-mv0=Mv 对板车应用动能定理得:-mgs=mv2-mv02 联立解得:s=v02【例9】两块厚度相同的木块A和B,紧靠着放在光滑的水平面上,其质量分别为,它们的下底面光滑,上表面粗糙;另有一质量的滑块C(可视为质点),以的速度恰好水平地滑到A的上表面,如图所示,由于摩擦,滑块最后停在木块B上,B和C的共同速度为3.0m/s,求:(1)木块A的最终速度; (2)滑块C离开A时的速度。解析:这是一个由A、B、C三个物体组成的系统,以这系统为研究对象,当C在A、B上滑动时,A、

15、B、C三个物体间存在相互作用,但在水平方向不存在其他外力作用,因此系统的动量守恒。(1)当C滑上A后,由于有摩擦力作用,将带动A和B一起运动,直至C滑上B后,A、B两木块分离,分离时木块A的速度为。最后C相对静止在B上,与B以共同速度运动,由动量守恒定律有 =(2)为计算,我们以B、C为系统,C滑上B后与A分离,C、B系统水平方向动量守恒。C离开A时的速度为,B与A的速度同为,由动量守恒定律有三、针对训练练习11质量为M的小车在水平地面上以速度v0匀速向右运动。当车中的砂子从底部的漏斗中不断流下时,车子速度将( B )A减小 B不变 C增大 D无法确定2如图所示,放在光滑水平桌面上的A、B木块

16、中部夹一被压缩的弹簧,当弹簧被放开时,它们各自在桌面上滑行一段距离后,飞离桌面落在地上。A的落地点与桌边水平距离0.5m,B的落地点距离桌边1m,那么( A、B、D)AA、B离开弹簧时的速度比为12BA、B质量比为21C未离开弹簧时,A、B所受冲量比为12D未离开弹簧时,A、B加速度之比123如图所示,在沙堆表面放置一长方形木块A,其上面再放一个质量为m=0.10kg的爆竹B,木块的质量为M=6.0kg。当爆竹爆炸时,因反冲作用使木块陷入沙中深度h=50cm,而木块所受的平均阻力为f=80N。若爆竹的火药质量以及空气阻力可忽略不计,g取,求爆竹能上升的最大高度。解:爆竹爆炸瞬间,木块获得的瞬时

17、速度v可由牛顿第二定律和运动学公式求得,爆竹爆炸过程中,爆竹木块系统动量守恒 练习21质量相同的两个小球在光滑水平面上沿连心线同向运动,球1的动量为 7 kgm/s,球2的动量为5 kgm/s,当球1追上球2时发生碰撞,则碰撞后两球动量变化的可能值是A Ap1=-1 kgm/s,p2=1 kgm/sBp1=-1 kgm/s,p2=4 kgm/sCp1=-9 kgm/s,p2=9 kgm/sDp1=-12 kgm/s,p2=10 kgm/s2小车AB静置于光滑的水平面上,A端固定一个轻质弹簧,B端粘有橡皮泥,AB车质量为M,长为L,质量为m的木块C放在小车上,用细绳连结于小车的A端并使弹簧压缩,

18、开始时AB与C都处于静止状态,如图所示,当突然烧断细绳,弹簧被释放,使物体C离开弹簧向B端冲去,并跟B端橡皮泥粘在一起,以下说法中正确的是 BCD A如果AB车表面光滑,整个系统任何时刻机械能都守恒B整个系统任何时刻动量都守恒C当木块对地运动速度为v时,小车对地运动速度为vDAB车向左运动最大位移小于L4质量为M的小车静止在光滑的水平面上,质量为m的小球用细绳吊在小车上O点,将小球拉至水平位置A点静止开始释放(如图所示),求小球落至最低点时速度多大?(相对地的速度) ()6如图所示甲、乙两人做抛球游戏,甲站在一辆平板车上,车与水平地面间摩擦不计.甲与车的总质量M=100 kg,另有一质量m=2

19、 kg的球.乙站在车的对面的地上,身旁有若干质量不等的球.开始车静止,甲将球以速度v(相对地面)水平抛给乙,乙接到抛来的球后,马上将另一质量为m=2m的球以相同速率v水平抛回给甲,甲接住后,再以相同速率v将此球水平抛给乙,这样往复进行.乙每次抛回给甲的球的质量都等于他接到的球的质量为2倍,求:(1)甲第二次抛出球后,车的速度大小.(2)从第一次算起,甲抛出多少个球后,再不能接到乙抛回来的球. ((1)v,向左 (2)5个)练习31在光滑水平面上,两球沿球心连线以相等速率相向而行,并发生碰撞,下列现象可能的是( )A若两球质量相同,碰后以某一相等速率互相分开B若两球质量相同,碰后以某一相等速率同

20、向而行C若两球质量不同,碰后以某一相等速率互相分开D若两球质量不同,碰后以某一相等速率同向而行2如图所示,用细线挂一质量为M的木块,有一质量为m的子弹自左向右水平射穿此木块,穿透前后子弹的速度分别为和v(设子弹穿过木块的时间和空气阻力不计),木块的速度大小为( )A BC D3载人气球原静止于高h的空中,气球质量为M,人的质量为m。若人要沿绳梯着地,则绳梯长至少是( )A(m+M)h/M Bmh/M CMh/m Dh4质量为2kg的小车以2m/s的速度沿光滑的水平面向右运动,若将质量为2kg的砂袋以3m/s的速度迎面扔上小车,则砂袋与小车一起运动的速度的大小和方向是( )A2.6m/s,向右

21、B2.6m/s,向左 C0.5m/s,向左 D0.8m/s,向右5车厢停在光滑的水平轨道上,车厢后面的人对前壁发射一颗子弹。设子弹质量为m,出口速度v,车厢和人的质量为M,则子弹陷入前车壁后,车厢的速度为( )Amv/M,向前 Bmv/M,向后Cmv/(m+M),向前 D06向空中发射一物体,不计空气阻力。当此物体的速度恰好沿水平方向时,物体炸裂成a、b两块,若质量较大的a块的速度方向仍沿原来的方向,则( )Ab的速度方向一定与原速度方向相反B从炸裂到落地的这段时间里,a飞行的水平距离一定比b的大Ca、b一定同时到达水平地面D在炸裂过程中,a、b受到的爆炸力的冲量大小一定相等7两质量均为M的冰

22、船A、B静止在光滑冰面上,轴线在一条直线上,船头相对,质量为m的小球从A船跳入B船,又立刻跳回,A、B两船最后的速度之比是_。参考答案1A、D 2B 3A 4C 5D 6C、D 7第三单元 动 量 和 能 量概述:处理力学问题、常用的三种方法一是牛顿定律;二是动量关系;三是能量关系。若考查的物理量是瞬时对应关系,常用牛顿运动定律;若研究对象为一个系统,首先考虑的是两个守恒定律;若研究对象为一个物体,可优先考虑两个定理。特别涉及时间问题时,优先考虑的是动量定理、而涉及位移及功的问题时,优先考虑的是动能定理。两个定律和两个定理,只考查一个物理过程的始末两个状态,对中间过程不予以细究,这正是它们的方

23、便之处,特别是变力问题,就显示出其优越性。例题分析:例1. 如图所示,质量分别为m和2m的A、B两个木块间用轻弹簧相连,放在光滑水平面上,A靠紧竖直墙。用水平力F将B向左压,使弹簧被压缩一定长度,静止后弹簧储存的弹性势能为E。这时突然撤去F,关于A、B和弹簧组成的系统,下列说法中正确的是 (BD) A.撤去F后,系统动量守恒,机械能守恒 B.撤去F后,A离开竖直墙前,系统动量不守恒,机械能守恒 C.撤去F后,A离开竖直墙后,弹簧的弹性势能最大值为E D.撤去F后,A离开竖直墙后,弹簧的弹性势能最大值为E/3A离开墙前墙对A有弹力,这个弹力虽然不做功,但对A有冲量,因此系统机械能守恒而动量不守恒

24、;A离开墙后则系统动量守恒、机械能守恒。A刚离开墙时刻,B的动能为E,动量为p=向右;以后动量守恒,因此系统动能不可能为零,当A、B速度相等时,系统总动能最小,这时的弹性势能为E/3。 指出:应用守恒定律要注意条件。 对整个宇宙而言,能量守恒和动量守恒是无条件的。但对于我们选定的研究对象所组成的系统,守恒定律就有一定的条件了。如系统机械能守恒的条件就是“只有重力做功”;而系统动量守恒的条件就是“合外力为零”。例2. 长为L宽为d质量为m总电阻为R的矩形导线框上下两边保持水平,在竖直平面自由落下而穿越一个磁感应强度为B宽度也是d的匀强磁场区。已知线框下边刚进入磁场就恰好开始做匀速运动。则整个线框

25、穿越该磁场的全过程中线框中产生的电热是_。若直接从电功率计算,就需要根据求匀速运动的速度v、再求电动势E、电功率P、时间t,最后才能得到电热Q。如果从能量守恒考虑,该过程的能量转化途径是重力势能EP电能E电热Q,因此直接得出Q=2mgd 例3如图所示,质量为1.0kg的物体m1,以5m/s的速度在水平桌面上AB部分的左侧向右运动,桌面AB部分与m1间的动摩擦因数=0.2,AB间的距离s=2.25m,桌面其他部分光滑。m1滑到桌边处与质量为2.5kg的静止物体m2发生正碰,碰撞后m2在坚直方向上落下0.6m时速度大小为4m/s,若g取10m/s2,问m1碰撞后静止在什么位置?解析:m1向右运动经

26、过AB段作匀减速运动,由动能定律可以求出离开B点继续向右运动的速度为4米/秒;和m2发生碰撞后,m2作平抛运动,由平抛运动知识可以求出m2做平抛运动的初速度(碰撞之后)为2米/秒。利用动量守恒定律可以求出碰撞之后瞬间m1的速度为1米/秒。由动能定律可以求出返回经过AB段,离B点0.25米处停止。例4翰林汇翰林汇222例子例如图所示,球A无初速地沿光滑圆弧滑下至最低点C后,又沿水平轨道前进至D与质量、大小完全相同的球B发生动能没有损失的碰撞。B球用长L的细线悬于O点,恰与水平地面切于D点。A球与水平地面间摩擦系数 =0.1,已知球A初始高度h=2米,CD=1米。问: (1)若悬线L=2米,A与B

27、能碰几次?最后A球停在何处? (2)若球B能绕悬点O在竖直平面旋转,L满足什么条件时,A、B将只能碰两次?A球最终停于何处?(1)20次 A球停在C处(2)L 0.76米,A球停于离D9.5米处例5如图所示,小木块的质量m0.4kg,以速度20m/s,水平地滑上一个静止的平板小车,小车的质量M1.6kg,小木块与小车间的动摩擦因数0.2.(不计车与路面的摩擦)求:(1)小车的加速度;(2)小车上的木块相对于小车静止时,小车的速度;(3)这个过程所经历的时间. (1)0.5m/s2;(2)4m/s;(3)8s第二问:对m、M系统研究,利用动量守恒定律很快求出木块相对小车静止时,小车的速度。也可以

28、利用动能定理分别研究m和M,但相对而言要麻烦得多。表明合理选择物理规律求解,可以提高解题速度和准确程度例6 如图所示,在光滑水平地面上有一辆质量为M的小车,车上装有一个半径为R的光滑圆环.一个质量为m的小滑块从跟车面等高的平台上以速度V0滑入圆环.试问:小滑块的初速度V0满足什么条件才能使它运动到环顶时恰好对环顶无压力? 解析:滑块至圆环的最高点且恰好对环顶无压力,应有式中V是滑块相对圆心O的线速度,方向向左。设小车此时速度u,并以该速度方向为正方向,则滑块的对地速度为对滑块和小车组成的系统,由于水平方向所受合外力为零,由动量守恒有由滑块和小车系统的机械能守恒有三式联立求解得:指出:公式是相对

29、圆心的线速度,而本题中的圆心是以u向右移动的,所以滑快对地速度为Vu。而动量守恒定律、机械能守恒定律表达式中的速度均应为对地的。例7、 如图所示,小车A质量为置于光滑水平面上。初速度为,带电量q=0.2C的可视为质点的物体B,质量为,轻放在小车的右端,它们的周转围存在匀强磁场,方向垂直纸面向里,磁场强度为B=0.5T,物体B与小车之间有摩擦力,小车足够长.求(1)物体B的最大速度.(2)小车A的最小速度.(3)在此过程中转变成多少能 解析:小车受到摩擦力作减速运动,物体B受到摩擦力作用而加速运动,其受到的磁场力方向向上,把A和B作为一个系统,在竖直方向上合外力为零,水平方向不受外力作用,系统总

30、动量守恒.当物体B受到的磁场力和所受重力平衡时,其速度最大,此时小车A的速度最小,在这个过程中系统损失的动能转变成能.(1) (2)根据动量守恒定律有:(3)例8静止在太空中的飞行器上有一种装置,它利用电场加速带电粒子,形成向外发射的粒子流,从而对飞行器产生反冲力,使其获得加速度.已知飞行器的质量为M,发射的2价氧离子,发射功率为P,加速电压为U,每个氧离子的质量为m,单位电荷的电量为e,不计发射离子后飞行器质量的变化,求:(1)射出的氧离子速度;(2)每秒钟射出的氧离子数;(3)射出离子后飞行器开始运动的加速度。解析:(1)以氧离子为研究对象,根据动能定理,有:所以氧离子速度为 (2)设每秒钟射出的氧离子数为N,则发射功率可表示为:所以氧离子数为N=P/2eU (3)以氧离子和飞行器为系统,设飞行器的反冲速度为V,根据动量守恒定律 所以,飞行器的加速度为例9、质量为0.01kg的子弹以300m/s的水平速度射中一静止在光滑水平面上的木块,子弹进入木块6cm而相对于木块静止下来。在这过程中,木块往前移动了0.2cm。求:(

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1