ImageVerifierCode 换一换
格式:DOC , 页数:33 ,大小:546.50KB ,
资源ID:2491254      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/2491254.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(基于状态观测器的线性不确定系统鲁棒控制器设计.doc)为本站会员(b****3)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

基于状态观测器的线性不确定系统鲁棒控制器设计.doc

1、摘 要在对实际控制过程的分析过程中,总有一些未知因素存在,诸如未建模动态,参数不确定性,工作环境的变化,降阶及线性化近似等,也包括外部干扰的不确定性。因此,对扰动控制系统或不确定控制系统的研究就更加符合实际过程。鲁棒控制理论的产生和发展,正是基于这一实际背景的,并逐渐成为控制理论和实际工程控制领域的一个重要研究方向。本文首先介绍鲁棒控制发展与历史以及一些基础知识。研究具有时滞的线性不确定系统的鲁棒稳定性问题利用矢量不等式的方法和Lyapunov稳定性原理给出不确定时滞系统鲁棒稳定的充分条件。本文主要利用Lyapunov稳定性理论,运用线性不等式 (LMI)的方法研究不确定系统的基于状态观测器的

2、鲁棒控制问题。本文研究的主题是基于状态观测器的不确定系统的鲁棒控制,包括线性不确定系统、线性不确定时滞系统在基于状态观测器情况下的鲁棒控制器设计。并利用 LMI给出使系统镇定的控制器存在的充分条件,并用实例验证了所得结论,得到预期要得到的仿真图形,实现其价值。关键词:状态观测器;不确定性;时滞系统;鲁棒控制;线性矩阵不等式AbstractSome unknownelements always exist in the analysis process for the control systems,such as unmodeled dynamics,parametric uncertaint

3、ies,change of the operating envioronment,model reduction and linearization approximations,etc,or external disturbance.So it is significative to study the disturbance process or the uncertain systems.The emergence and the development of the robust control theory were just in such enviorment,and it is

4、 becoming an important research field of the control theory and its practice applications.This paper first introduces the development of robust control and introduces some basic historical knowledge. Study of linear uncertain time-delay system robust stability problem of the use of vector Lyapunov i

5、nequality and the principle of the stability of uncertain time-delay systems are given a sufficient condition for robust stability. In this paper, the use of Lyapunov stability theory, the use of linear inequality (LMI) method of the uncertain system state observer-based robust control problem. The

6、theme of this paper is based on state observer robust control of uncertain systems, including linear uncertain systems, linear uncertain time-delay systems in state observer based on the robust case controller design. LMI is given using the system controller calm a sufficient condition for the exist

7、ence of, and examples demonstrate the conclusions have been expected to be the simulation graphics, realized its value. Key words: State observer;uncertainty;delay system;robust control; linear matrix inequality 目 录第1章绪论11.1系统不确定性存在的背景和描述11.2鲁棒控制发展概述21.3线性矩阵不等式(LMI)的发展51.4本文研究的意义61.5本文的研究内容及安排7第2章 预

8、备知识92.1 状态观测器92.2 线性矩阵不等式112.3 Lyapunov稳定性理论13第3章 基于状态观测器的线性不确定系统的鲁棒控制器设计163.1 问题描述163.2 主要内容173.3 仿真实例193.4 本章小结20第4章 基于状态观测器的线性不确定时滞系统的鲁棒控制器设计214.1 问题描述214.2 主要内容224.3 仿真实例254.4 本章小结26结 论28参考文献29致 谢30附 录31I第1章 绪 论1.1 系统不确定性存在的背景和描述在控制系统的分析研究过程中,首先要建立被控对象的模型,即给出一种数学描述,由于实际控制对象的复杂性,加上周围环境的不稳定性,这使得用数

9、学模型来完全真实反映一个实际的被控对象几乎是不可能的。因此,我们所研究的数学模型都是实际被控对象的一种近似描述,这种近似通常来源于几个方面:对高阶系统的降阶处理,非线性系统的线性化,测量误差,各种干扰信号,环境的变化对系统参数和动态的影响。这些近似来源一般归结为不确定因素,即不确定性。这种不确定性很明显会给我们带来不利影响,因此,我们要考虑这种影响的程度及对这些影响程度的估量方法,最好在对控制系统的分析设计时,通过考虑这些不确定因素,使得我们设计的控制器能够减少这种不利影响,鲁棒控制的方法正是基于这种思想提出的。所谓的鲁棒控制是通过利用系统模型的一些不确定信息,来设计一个控制器,使得闭环系统对

10、所有的不确定性是稳定的,且具有一定的动态性能。鲁棒控制主要研究具有未知有界不确定性的系统模型,通过鲁棒控制的手段使系统具有鲁棒性,即系统在不确定因素作用下维持其稳定性的能力。这种模型对不确定型的描述是相对宽松的,它不需要对不确定因素的随机特性作任何假设,通常只是认为它属于某个已知集合。对于系统模型的未知有界不确定性又可以分为结构不确定性和非结构不确定性两类:结构不确定性是指那些模型与不确定性之间相互关系的结构非常明确的不确定性;非结构不确定性是指那些结构不明确的不确定性。在鲁棒控制问题的研究中,非结构化的不确定性模型更重要,其原因是由于所采用的控制模型只有包括某些非结构化的不确定性才能覆盖维建

11、模动态。在实际生产过程中,对各种过程及环节的控制系统设计总是不可避免的要利用到被控对象的有关信息,这些信息可能是过程或环节的脉冲或阶跃响应(模型预测控制)、传递函数、动态方程,或者是描述系统的时间常数、延迟时间等,这些信息的获得总是要利用一些试验手段或理论推导得到我们要据此设计控制器的所谓“模型”,这些模型的精确性由于信息获得过程的局限性往往会受到影响。另外,随着生产过程的复杂性以及控制要求的提高,即使获得了相对精确的模型,但据此所设计的控制器也会过于复杂常需对模型进行必要的简化,才可在实际中得以应用。此外,随着系统的工作环境或条件的变化,控制系统中元器件的老化、磨损,信号传输过程中出现的偏差

12、或故障,对被控对象的特性均会有影响,从而导致系统模型的误差或称作不确定性。在实际过程中,从严格意义上讲,不存在不确定性的系统是不存在的。因此,对不确定性系统的稳定性和控制进行研究具有较大的意义和实际价值。1 在经典控制理论中,被控对象的频率特性是设计控制系统的主要依据,整个系统的性能指标也是通过引入控制器来整定开环系统频率特性的方法而实现的。由于被控对象的频率特性通常是靠实验测试等手段获得的,因此,不可避免的带有不确定性。这就导致经典控制理论设计的控制器,在很大程度上必须依靠现场调试,才能获得满意的控制技能。而基于状态方程等数学模型为主要设计依据的现代控制理论,则依靠线性代数微分几何以及最优化

13、方法等严谨的数学工具,采用数学解析的手段来设计控制系统。同理,通常用机理推导和模型辨识等手段得到的数学模型同样带有不确定性。在实际应用的过程中,尽管系统模型存在不确定性,我们总希望所设计的控制器能够满足一定的期望指标。即希望所设计的控制器对系统的不确定性不过与敏感,这就是我们要考虑的鲁棒性问题。不确定性可分为非结构不确定性和结构不确定性这两大类。前者用于表示那些结构不明确的不确定性,例如频率响应位于复平面上某一个集合内的不确定性为非结构不确定性。后者用于表示那些整个控制对象和不确定性之间相互关系的结构是非常明确的不确定性,例如控制对象中存在有限个不确定性参数。一个不确定性系统的描述应该包括下述

14、三个方面的内容:(1) 公称模型;(2) 表示不确定性的摄动及其与公称模型的关系;(3) 摄动的最大值。这样,不确定系统可以用一个非结构化集合或结构化集合来描述。1.2 鲁棒控制发展概述在控制系统的分析研究过程中,首先要建立被控对象的模型,即给出一种数学描述,由于实际控制对象的复杂性,加上周围环境的不稳定性,这使得用数学模型来完全真实反映一个实际的被控对象几乎是不可能的。因此,我们所研究的数学模型都是实际被控对象的一种近似描述,这种近似通常来源于几个方面:对高阶系统的降阶处理,非线性系统的线性化,测量误差,各种干扰信号,环境的变化对系统参数和动态的影响。这些近似来源一般归结为不确定因素,即不确

15、定性。这种不确定性很明显会给我们带来不利影响,因此,我们要考虑这种影响的程度及对这些影响程度的估量方法,最好在对控制系统的分析设计时,通过考虑这些不确定因素,使得我们设计的控制器能够减少这种不利影响,鲁棒控制的方法正是基于这种思想提出的。 所谓的鲁棒控制是通过利用系统模型的一些不确定信息,来设计一个控制器,使得闭环系统对所有的不确定性是稳定的,且具有一定的动态性能。鲁棒控制主要研究具有未知有界不确定性的系统模型,通过鲁棒控制的手段使系统具有鲁棒性,即系统在不确定因素作用下维持其稳定性的能力。这种模型对不确定型的描述是相对宽松的,它不需要对不确定因素的随机特性作任何假设,通常只是认为它属于某个已

16、知集合。对于系统模型的未知有界不确定性又可以分为结构不确定性和非结构不确定性两类:结构不确定性是指那些模型与不确定性之间相互关系的结构非常明确的不确定性;非结构不确定性是指那些结构不明确的不确定性。在鲁棒控制问题的研究中,非结构化的不确定性模型更重要,其原因是由于所采用的控制模型只有包括某些非结构化的不确定性才能覆盖维建模动态。鲁棒思想最早可追溯到Peano,Bendixson和Darbox等人对微分方程解对初值和参数具有连续依赖性的工作。这是一种无穷小的分析的思想,其要求解在给定区间内的任意小变化可以有参数的充分小来保证。这种控制方法局限于微笑的不确定性,是一种敏感性分析方法。然而,实际中系统的参数是不能视为变化或仅具有无穷小变化,被控对象工作环境的变化,模型的不精确,降阶近似,非线性的线性

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1