ImageVerifierCode 换一换
格式:DOCX , 页数:15 ,大小:113.83KB ,
资源ID:24567920      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/24567920.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(外文翻译应用计算机辅助工程设计重型卡车车架.docx)为本站会员(b****2)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

外文翻译应用计算机辅助工程设计重型卡车车架.docx

1、外文翻译应用计算机辅助工程设计重型卡车车架辅助工程设计重型货车车架Carlos Cosme, Amir Ghasemi and Jimmy Gandevia摘要:近年来,重型货车市场变得非常的注重重量和降低成本。这对设计工程师是重大挑战,因为这些车辆被用在各种各样的公路环境,从高速公路到严重的越野环境。目前的挑战是在不牺牲耐用性和性能降低的前提下满足质量和成本。本文论述了运用计算机集成、计算机辅助设计和工程软件代码(Pro / Engineer,ADAMS软件和ANSYS)来辅助设计更改车架。特别是,本文集中论述了一个ADAMS多体动力学模型,一个完整的卡车和拖车来模拟车辆的侧翻稳定性,平顺性

2、,和耐久性载荷。该模型包括一个采用灵活的框架模型模态综合模式,探讨了有限元分析程序。之间的多体仿真链接与有限元程序也可以用来传输、加载应力分析有限元模型。所有代码之间紧密连结,确保新的设计并行计算可快速用于设计和分析。一个说明这是如何已被使用的技术详细的个案研究也包括在内。简介最近,重卡行业经历了汽车降低成本和重量的大发展。这一直是卡车制造商的主要挑战,在不牺牲耐用性和性能的前提下,寻找好的方式来优化他们的汽车设计。 由于车架是车辆系统的重要组成部分,它经常被用于完善。本文概述了电脑辅助工程(CAE)分析更改车架以及这些变化会如何影响车辆性能。重型卡车的车架是该车辆的骨干,上面集成了主要的卡车

3、组成系统,如车轴,悬架,动力总成,驾驶室。典型的结构框架是梯形框架,中间交叉几根横梁。纵梁的断面尺寸变化很大,根据在卡车上的受力而定。而且,需要考虑各种因素:重量,复杂性和成本。这些变化将取决于横梁的作用和位置。请参考图1插图,一辆卡车的车架。然而,横梁布置的变化带来的影响还无法看出来。例如,如果横梁的抗扭刚度降低,对汽车的侧倾稳定性和耐久性的影响是怎么的呢?设计工程师们需要对这些类型的问题给出答案以指导他们的工作。特别是,及时的设计和分析程序是必需的,这样新的设计可以快速评估。图1重型载货汽车车架计算机辅助工程在过去的二十年中汽车自动化设计工具CAE得到了巨大的发展。这项技术的已被很多汽车制

4、造商采用以改善汽车设计来满足快速增长的市场要求。当今的结构设计通常是使用两个CAE工具:有限元分析(FEA)和多体系统(MSS),结合CAD提高设计和分析。在过去十五年里,CAD系统已取代绘图板作为首选设计方法。它们使设计师和工程师能够快速画出卡车零部件,汽车真实模型和设计图纸。先进的CAD系统功能丰富,如参数化实体建模和大型装配管理。他们已经发展成为主要的数据库,为工程信息尤其是CAD系统提供下游CAE应用的重要数据。工程师通常使用有限元分析研究结构构件的强度。典型的有限元分析的重点是结构应力,挠度和自然频率。首先对通常被称为网格的离散结构进行分析。该网格是由节点和元素组成,而且经常从CAD

5、创建几何系统。这些节点代表位移计算的结构。他们定义的局部质量,刚度和阻尼性能结构。有关这些数量方程,可以自动开发节点位移。其他投入,如边界条件,载荷和材料特性,必须是由用户定义。所有这些效果都需要小心的判断和对有意义的结果进行认真的分析。结果后处理包括图像变形负载结构,彩色应力轮廓,振型动画。MSS多体系统仿真方法研究了运动部件和组件,并经常用来研究车辆暂停或车辆的操作和动态响应。一个典型的完整的车型MSS将刚体组成(车轮,车轴,车架,发动机,驾驶室)模拟成关节连接和理想化力元。 MSS代码自动发展非线性微分方程和代数方程定义模型中的物体运动。该方程在数值上集成刚体位移,速度,加速度和受力。结

6、果以图形和动画显示该系统的运动。至于有限元分析,CAD数据经常使用MSS的发展模式。CAD几何数据是用于建立MSS的布局模式,如接头和力量元素的位置。CAD实体模型数据也可以用来估计每个刚体的位置,质心和惯性特性。作用在刚体上的力可以用作MSS的输入负载,有限元分析确定该刚体的结构应力。CAE技术在本文所讨论的工具包括基与CAD的Pro / Engineer,ANSYS进行有限元分析,以及基于ADAMS的MSS。下面的讨论引用的是某型卡车的车架有限元分析。CAE重型汽车建模如上所述,在目前提供的CAD与CAE工具提供了大量的整合。尽管如此,这些工具是非常粗略的分析,仍然需要努力分析重型卡车和卡

7、车车架。为了充分了解车架影响汽车操纵的变化,滚动稳定性,平顺性和持久性,需要一个详细的MSS模型,可以模拟所有这些影响。使用ADAMS软件代码,建立了WesterStar卡车的模型。图二展示了在ADAMS环境下的模型。图2 ADAMS的MSS的模型该模型包括以下几个特点:100刚体180力元45共同元素415度-的自由度1. “Mechanics of Heavy-Duty Trucks and Truck Combinations” ,UMTRI Course Notes, July, 1995.2. Stasa, Frank L., “Applied Finite Element Anal

8、ysis for Engineers”, CBS College Publishing, 1985.3. Ottarsson, Gisli, “Modal Flexibility Method in ADAMS/FLEX”, Mechanical Dynamics, Inc., March, 1998.4. “Using ADAMS/FLEX”, Mechanical Dynamics, Inc.,1997.5. “ADAMS/Finite Element Analysis Reference Manual”, Mechanical Dynamics, Inc. , November 15,1

9、994.6. “Pro/MESH and Pro/FEM Post, Users Guide”, Parametric Technology Corporation, 1997.7. “ANSYS Structural Analysis Guide”, Analysis, Inc.,1994.8. Gillespie, Thomas D., “Fundamentals of Vehicle Dynamics”, Society of Automotive Engineers, Inc.,1992.9. Gobessi, Mark and Arnold, Wes, “The Applicatio

10、n of Bonded Aluminum Sandwich Construction Technology to Achieve a Lightweight, Low Cost Automotive Structure”, SAE paper 982279.1999-01-3760Application of Computer Aided Engineering in the Design of Heavy-Duty Truck FramesCarlos Cosme, Amir Ghasemi and Jimmy GandeviaWestern Star Trucks, Inc.Copyrig

11、ht 1999 Society of Automotive Engineers, Inc.ABSTRACTIn recent years the heavy-duty Class 8 truck market has become very focused on weight and cost reduction. This represents a major challenge for design engineers since these vehicles are used in a wide variety of vocations from highway line haul to

12、 logging in severe off-road environments.The challenge is to meet the weight and costreduction goals without sacrificing durability and performance. This paper discusses the integration of computer aided design and engineering software codes (Pro/Engineer,ADAMS, and ANSYS) to simulate the effect of

13、design changes to the truck frame .In particular, this paper discuses the development of an ADAMS multi-body dynamics model of a full truck and trailer to simulate vehicle handling, roll stability, ride performance, and durability loading. The model includes a flexible frame model using a component

14、mode synthesisapproach with modes imported from a finite element analysis program. The link between the multi-body simulation and the finite element code is also used to transferloads back to the finite element model for stress analysis. Tight links between all the codes ensures that new design iter

15、ations can be quickly evaluated for concurrentdesign and analysis. A detailed case study showing how this technology has been used is also included.INTRODUCTIONRecently the heavy truck industry has experienced a large push to develop vehicles with reduced cost and weight. This has been a major chall

16、enge for truck manufacturersas they look for ways to optimize their vehicle designs without sacrificing durability or performance.Since the truck frame is a major component in the vehicle system, it is often identified for refinement. This paper outlines a computer aided engineering (CAE) procedure

17、for analyzing changes to the truck frame and how these changes affect vehicle performance .The frame of a heavy truck is the backbone of the vehicle and integrates the main truck component systems such as the axles, suspension, power train, cab, and trailer.The typical frame is a ladder structure co

18、nsisting of two C channel rails connected by cross-members. The framerails vary greatly in length and cross-sectional dimensions depending on the truck application. Likewise, thecross-members vary in design, weight, complexity, and cost. These variations will depend upon the cross-member purpose and

19、 location. Refer to Figure 1 for an illustrationof a truck frame. However, the effects of changes to the frame and cross-members are not well understood.For example, if the torsional stiffness of a suspension cross-member is lowered, what is the effect on the vehiclesroll stability, handling, ride,

20、and durability? Design engineers require answers to these types of questions to guide them in their work. In particular, a concurrent design and analysis procedure is required so that newdesigns can be quickly evaluated.Figure 1. Class 8 Heavy-Duty Truck FrameCOMPUTER AIDED ENGINEERINGIn the last tw

21、enty years there has been an enormous growth in the development of CAE tools for automotive design. Much of this technology has been adopted by the truck industry as truck manufacturers look to improve their designs in a rapidly growing market. Today structural design is typically performed using tw

22、o CAE tools: finiteelement analysis (FEA), and multi-body system simulation (MSS). These are combined with computer aided design (CAD) software to improve design and analysiscommunication.CAD In the last fifteen years CAD systems have replaced drawing boards as the method of choice for design. They

23、enable designers and engineers to quicklycreate realistic models of truck components, vehicle assemblies, and design drawings for manufacturing.Advanced CAD systems are rich in features such as parametric solid model and large assembly management. They have evolved to become major databases for engi

24、neering information. In particular , CAD systems provide important data for downstream CAE applications.FEA Finite element analysis is usually used by engineers to study the strength of structural components.Typical FEA activity is focused on analyzing structural stresses, deflections, and natural f

25、requencies. The analysis begins with a discretized representation of a structureknown as a mesh. The mesh is composed of nodes and elements and is often created with geometry from a CAD system. The nodes represent points on the structure where displacements are calculated. The elements are bounded b

26、y sets of nodes and enclose areas or volumes. They define the local mass, stiffness, and damping properties of the structure. Equations relating these quantitiesto the nodal displacements are automatically developed by the software codes. Other inputs, such as boundary conditions, applied loads, and

27、 material properties, must be defined by the user. Each of these quantities requires careful judgement for meaningful results to be achieved. Results post-processing includes images of deformed structures under load, coloured stress contours, and mode shape animations.MSS Multi-body system simulatio

28、n is used to study the motion of components and assemblies and is often used to study a vehicle suspension or a vehicles handling and ride response. A typical MSS model of a full vehicle will be composed of rigid bodies (wheels, axles, frame , engine, cab, and trailer) connected by idealized joints

29、andforce elements. The MSS code automatically develops the non-linear differential and algebraic equations that define the motion of the bodies in the model. The equations are numerically integrated to produce time histories of rigid body displacements, velocities, accelerations, and forces. Results

30、 are viewed as graphs and animations ofthe system motion. As with FEA, CAD data is often used to develop a MSS model. Geometry data from a CAD assembly is used to establish the layout of the MSS model such as the location of joints and force elements. CAD solid model data is also used to estimate th

31、e location of the center-of-mass and the inertial properties of each rigid body. Forces acting on a rigid body from a MSS can be used as input loads to a finite element analysis to determine the structural stresses in that rigid body.The CAE tools discussed in this paper include Pro/Engineer for CAD

32、, ANSYS for FEA, and ADAMS for MSS. The following discussion references the specific capabilities of these codes in developing a customized environment for the engineering analysis of truck frames.CAE CUSTOMIZATION FOR HEAVY TRUCKMODELLINGAs described above, the current offering of CAD and CAE tools provide a great deal of integration. Nonetheless,these tools are very general in scope and a significant customization effort is required for the analysis of heavy duty trucks and truck frames. To fully understand how cha

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1