ImageVerifierCode 换一换
格式:DOCX , 页数:13 ,大小:32.27KB ,
资源ID:24343119      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/24343119.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(数学问题.docx)为本站会员(b****4)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

数学问题.docx

1、数学问题内容方程z(s)=0的所有有意义的解都在一条直线上。 有些数具有不能表示为两个更小的数的乘积的特殊性质,例如,2,3,5,7,等等。这样的数称为素数;它们在纯数学及其应用中都起着重要作用。在所有自然数中,这种素数的分布并不遵循任何有规则的模式;然而,德国数学家黎曼(18261866)观察到,素数的频率紧密相关于一个精心构造的所谓黎曼蔡塔函数z(s)的性态。著名的黎曼假设断言,方程z(s)=0的所有有意义的解都在一条直线上。这点已经对于开始的1,500,000,000个解验证过。证明它对于每一个有意义的解都成立将为围绕素数分布的许多奥秘带来光明。 理论形成来源几千年前人类就已知道2,3,

2、5,7,31,59,97这些正整数。除了1及本身之外就没有其他因子,他们称这些数为素数(或质数Prime number),希腊数学家欧几里德证明了在正整数集合里有无穷多的素数,他是用反证法证明、(读者可以参看拙著:数学和数学家的故事第一集里这个证明。) 1730年,欧拉在研究调和级数: 1/n=1+1/2+1/3+.+1/n.。(1) 时,发现: 1/n=(1+1/2+1/22+.)(1+1/3+1/32+.)(1+1/5+1/52+.).=(1-1/p)-1。(2) 其中,n过所有正整数,p过所有素数,但稍加改动便可以使其收敛,将n写成ns(s1),即可。如果黎曼假设正确: (x)=Li(x

3、)+O(x1/2*logx).。(3) 证明了上式,即证明了黎曼猜想。 为什么: 1/(1-1/P)=1/(1-1/2)1/(1-1/3)1/(1-1/5).=1/n=1+1/2+1/3+1/4+,。(4) 因为: 1/(1-r)=1+r+r2+r3+r4+.。(5) 所以: 1/(1-1/2)=1+1/2+(1/2)2+(1/2)3+(1/2)4+. 1/(1-1/3)=1+1/3+(1/3)2+(1/3)3+(1/3)4+. 1/(1-1/5)=1+1/5+(1/5)2+(1/5)3+(1/5)4+. . 右端所有第一项的“1”相乘得到:“1”; 右端第一行1/2与其它行第一项的“1”相乘

4、得到“1/2; . 把所有加起来就是:1+1/2+1/3+1/4+. 在证明素数定理的过程中,黎曼提出了一个论断:Zeta函数的零点都在直线Res(s) = 1/2上。他在作了一番努力而未能证明后便放弃了,因为这对他证明素数定理影响不大。但这一问题至今仍然未能解决,甚至于比此假设简单的猜想也未能获证。而函数论和解析数论中的很多问题都依赖于黎曼假设。在代数数论中的广义黎曼假设更是影响深远。若能证明黎曼假设,则可带动许多问题的解决。 黎曼 函数黎曼在1858年写的一篇只长8页关于素数分布的论文,就在这论文里他提出了有名的黎曼猜想(Riemanns Hypoth-esis)。 这猜想提出已有一百多年

5、了,许多有名的数学家曾尝试去证明,就像喜欢爬山的人希望能爬上珠穆朗玛峰一样因为它的顶峰非常困难到达,目前已有人登上这世界高峰,可是却没有人能证明这猜想!那么这个让上帝如此吝啬的黎曼猜想究竟是一个什么样的猜想呢? 在回答这个问题之前我们先得介绍一个函数:黎曼 函数。 这个函数虽然挂着黎曼的大名, 其实并不是黎曼首先提出的。 但黎曼虽然不是这一函数的提出者, 他的工作却大大加深了人们对这一函数的理解, 为其在数学与物理上的广泛应用奠定了基础。 后人为了纪念黎曼的卓越贡献, 就用他的名字命名了这一函数。 那么究竟什么是黎曼 函数呢?黎曼 函数 (s) 是级数表达式 (n 为正整数) (s) = n

6、n-s (Re(s) 1) 在复平面上的解析延拓。 之所以要对这一表达式进行解析延拓, 是因为 - 如我们已经注明的 - 这一表达式只适用于复平面上 s 的实部 Re(s) 1 的区域 (否则级数不收敛)。黎曼找到了这一表达式的解析延拓 (当然黎曼没有使用 “解析延拓” 这样的现代复变函数论术语)。 运用路径积分, 解析延拓后的黎曼 函数可以表示为: 这里我们采用的是历史文献中的记号, 式中的积分实际是一个环绕正实轴 (即从 + 出发, 沿实轴上方积分至原点附近, 环绕原点积分至实轴下方, 再沿实轴下方积分至 + - 离实轴的距离及环绕原点的半径均趋于 0) 进行的围道积分; 式中的 函数 (

7、s) 是阶乘函数在复平面上的推广, 对于正整数 s1: (s)=(s-1)!。 可以证明, 这一积分表达式除了在 s=1 处有一个简单极点外在整个复平面上解析。 这就是黎曼 函数的完整定义。 运用上面的积分表达式可以证明,黎曼 函数满足以下代数关系式: (s) = 2(1-s)(2)s-1sin(s/2)(1-s) 从这个关系式中不难发现,黎曼 函数在 s=-2n (n 为正整数) 取值为零 - 因为 sin(s/2) 为零注三。 复平面上的这种使黎曼 函数取值为零的点被称为黎曼 函数的零点。 因此 s=-2n (n 为正整数) 是黎曼 函数的零点。 这些零点分布有序、 性质简单, 被称为黎曼

8、 函数的平凡零点 (trivial zeros)。 除了这些平凡零点外,黎曼 函数还有许多其它零点, 它们的性质远比那些平凡零点来得复杂, 被称为非平凡零点 (non-trivial zeros) 。 对黎曼 函数非平凡零点的研究构成了现代数学中最艰深的课题之一。 我们所要讨论的黎曼猜想就是一个关于这些非平凡零点的猜想, 在这里我们先把它的内容表述一下, 然后再叙述它的来笼去脉: 黎曼 猜想黎曼 函数的所有非平凡零点都位于复平面上 Re(s)=1/2 的直线上。 在黎曼猜想的研究中, 数学家们把复平面上 Re(s)=1/2 的直线称为 critical line。 运用这一术语,黎曼猜想也可以

9、表述为:黎曼 函数的所有非平凡零点都位于 critical line 上。 这就是黎曼猜想的内容, 它是黎曼在 1859 年提出的。 从其表述上看,黎曼猜想似乎是一个纯粹的复变函数命题, 但我们很快将会看到, 它其实却是一曲有关素数分布的神秘乐章。 素数分布公元前300年,古希腊数学家欧几里得就发现了数论的本质是素数,他自己证明了有无穷多个素数,公元前250年古希腊数学家埃拉托塞尼发明了一种筛法: (一)“要得到不大于某个自然数N的所有素数,只要在2-N中将不大于N的素数的倍数全部划去即可”。(沈康身自然杂志1991年11期)。後来人们 (二)将上面的内容等价转换:“如果N是合数,则它有一个因

10、子d满足1dN”。(基础数论13页,U杜德利著,上海科技出版社)。. (三)再将(二)的内容等价转换:“若自然数N不能被不大于(根号)N的任何素数整除,则N是一个素数”。见(代数学辞典上海教育出版社1985年。屉部贞世朗编。259页)。 (四)上面这句话的汉字可以等价转换成为用英文字母表达的公式: N=p1m1+a1=p2m2+a2=.=pkmk+ak 。(6) 其中 p1,p2,.,pk表示顺序素数2,3,5,,。a0。即N不能是2m+0,3m+0,5m+0,.,pkm+0形。若NP(k+1)的平方 注:后面的1,2,3,.,k,(k+1)是脚标,由于打印不出来,凡字母后面的数字或者i与k都

11、是脚标 ,则N是一个素数。 (五)可以把(6)等价转换成为用同余式组表示: Na1(modp1), Na2(modp2),.,Nak(modpk)。 (7) 例如,29,29不能够被根号29以下的任何素数2,3,5整除,29=2x14+1=3x9+2=5x5+4。 291(mod2),292(mod3), 294(mod5)。29小于7的平方49,所以29是一个素数。 以后平方用“*”表示,即:=m*。 由于(7)的模p1,p2,.,pk 两两互素,根据孙子定理(中国剩余定理)知,(7)在p1p2.pk范围内有唯一解。 例如k=1时,N=2m+1,解得N=3,5,7。求得了(3,3*)区间的全

12、部素数。 k=2时,N=2m+1=3m+1,解得N=7,13,19; N=2m+1=3m+2,解得N=5,11,17,23。求得了(5,5*)区间的全部素数。 k=3时, -| 5m+1-|- 5m+2-| 5m+3,| 5m+4.| -|-|-|-|-| n=2m+1=3m+1= |-31-|-7, 37-|-13,43|-19-| n=2m+1=3m+2= |-11,41-|-17,47-|-23-|-29-| - 求得了(7,7*)区间的全部素数。仿此下去可以求得任意大的数以内的全部素数。 有人发现埃拉托塞尼筛法的公式【即(6)(7)式】反过来可以推出黎曼猜想的猜想。因为(1)式要求S是

13、复数,(6)(7)式要求n=6之偶数,都可以表示成两个奇质数之和。 (b) 任何一个=9之奇数,都可以表示成三个奇质数之和。 这就是着名的哥德巴赫猜想。欧拉在6月30日给他的回信中说,他相信这个猜想是正确的,但他不能证明。叙述如此简单的问题,连欧拉这样首屈一指的数学家都不能证明,这个猜想便引起了许多数学家的注意。从哥德巴赫提出这个猜想至今,许多数学家都不断努力想攻克它,但都没有成功。当然曾经有人作了些具体的验证工作,例如: 6 = 3 + 3, 8 = 3 + 5, 10 = 5 + 5 = 3 + 7, 12 = 5 + 7, 14 = 7 + 7 = 3 + 11,16 = 5 + 11,

14、 18 = 5 + 13, 等等。有人对33108以内且大过6之偶数一一进行验算,哥德巴赫猜想(a)都成立。但严格的数学证明尚待数学家的努力。 从此,这道著名的数学难题引起了世界上成千上万数学家的注意。200年过去了,没有人证明它。哥德巴赫猜想由此成为数学皇冠上一颗可望不可及的明珠。 人们对哥德巴赫猜想难题的热情,历经两百多年而不衰。世界上许许多多的数学工作者,殚精竭虑,费尽心机,然而至今仍不得其解。 到了20世纪20年代,才有人开始向它靠近。1920年挪威数学家布朗用一种古老的筛选法证明,得出了一个结论:每一个比大的偶数都可以表示为(99)。这种缩小包围圈的办法很管用,科学家们于是从(9十9

15、)开始,逐步减少每个数里所含质数因子的个数,直到最后使每个数里都是一个质数为止,这样就证明了哥德巴赫猜想。 目前最佳的结果是中国数学家陈景润于1966年证明的,称为陈氏定理:“任何充分大的偶数都是一个质数与一个自然数之和,而后者仅仅是两个质数的乘积。”通常都简称这个结果为大偶数可表示为 “1 + 2”的形式。 在陈景润之前,关於偶数可表示为 s个质数的乘积 与t个质数的乘积之和(简称“s + t”问题)之进展情况如下: 1920年,挪威的布朗证明了“9 + 9”。 1924年,德国的拉特马赫证明了“7 + 7”。 1932年,英国的埃斯特曼证明了“6 + 6”。 1937年,意大利的蕾西先后证

16、明了“5 + 7”, “4 + 9”, “3 + 15”和“2 + 366”。 1938年,苏联的布赫夕太勃证明了“5 + 5”。 1940年,苏联的布赫夕太勃证明了“4 + 4”。 1948年,匈牙利的瑞尼证明了“1 + c”,其中c是一很大的自然数。 1956年,中国的王元证明了“3 + 4”。 1957年,中国的王元先后证明了 “3 + 3”和“2 + 3”。 1962年,中国的潘承洞和苏联的巴尔巴恩证明了“1 + 5”, 中国的王元证明了“1 + 4”。 1965年,苏联的布赫 夕太勃和小维诺格拉多夫,及 意大利的朋比利证明了“1 + 3 ”。 1966年,中国的陈景润证明了 “1 +

17、 2 ”。 从1920年布朗证明99到1966年陈景润攻下“12”,历经46年。自陈氏定理诞生至今的30多年里,人们对哥德巴赫猜想猜想的进一步研究,均劳而无功。 布朗筛法的思路是这样的:即任一偶数(自然数)可以写为2n,这里n是一个自然数,2n可以表示为n个不同形式的一对自然数之和: 2n=1+(2n-1)=2+(2n-2)=3+(2n-3)=n+n 在筛去不适合哥德巴赫猜想结论的所有那些自然数对之后(例如1和2n-1;2i和(2n-2i),i=1,2,;3j和(2n-3j),j=2,3,;等等),如果能够证明至少还有一对自然数未被筛去,例如记其中的一对为p1和p2,那么p1和p2都是素数,即

18、得n=p1+p2,这样哥德巴赫猜想就被证明了。前一部分的叙述是很自然的想法。关键就是要证明至少还有一对自然数未被筛去。目前世界上谁都未能对这一部分加以证明。要能证明,这个猜想也就解决了。 然而,因大偶数n(不小于6)等于其对应的奇数数列(首为3,尾为n-3)首尾挨次搭配相加的奇数之和。故根据该奇数之和以相关类型质数+质数(1+1)或质数+合数(1+2)(含合数+质数2+1或合数+合数2+2)(注:1+2 或 2+1 同属质数+合数类型)在参与无限次的类别组合时,所有可发生的种种有关联系即1+1或1+2完全一致的出现,1+1与1+2的交叉出现(不完全一致的出现),同2+1或2+2的完全一致,2+

19、1与2+2的不完全一致等情况的排列组合所形成的各有关联系,就可导出的类别组合为1+1,1+1与1+2和2+2,1+1与1+2,1+2与2+2,1+1与2+2,1+2等六种方式。因为其中的1+2与2+2,1+2 两种类别组合方式不含1+1。所以1+1没有覆盖所有可形成的类别组合方式,即其存在是有交替的,至此,若可将1+2与2+2,以及1+2两种方式的存在排除,则1+1得证,反之,则1+1不成立得证。然而事实却是:1+2 与2+2,以及1+2(或至少有一种)是陈氏定理中(任何一个充分大的偶数都可以表示为两个素数的和,或一个素数与两个素数乘积的和),所揭示的某些规律(如1+2的存在而同时有1+1缺失

20、的情况)存在的基础根据。所以1+2与2+2,以及1+2(或至少有一种)类别组合方式是确定的,客观的,也即是不可排除的。所以1+1成立是不可能的。这就彻底论证了布朗筛法不能证1+1。 由于素数本身的分布呈现无序性的变化,素数对的变化同偶数值的增长二者之间不存在简单正比例关系,偶数值增大时素数对值忽高忽低。能通过数学关系式把素数对的变化同偶数的变化联系起来吗?不能!偶数值与其素数对值之间的关系没有数量规律可循。二百多年来,人们的努力证明了这一点,最后选择放弃,另找途径。于是出现了用别的方法来证明歌德巴赫猜想的人们,他们的努力,只使数学的某些领域得到进步,而对歌德巴赫猜想证明没有一点作用。 歌德巴赫

21、猜想本质是一个偶数与其素数对关系,表达一个偶数与其素数对关系的数学表达式,是不存在的。它可以从实践上证实,但逻辑上无法解决个别偶数与全部偶数的矛盾。个别如何等于一般呢?个别和一般在质上同一,量上对立。矛盾永远存在。歌德巴赫猜想是永远无法从理论上,逻辑上证明的数学结论。 “用当代语言来叙述,哥德巴赫猜想有两个内容,第一部分叫做奇数的猜想,第二部分叫做偶数的猜想。奇数的猜想指出,任何一个大于等于7的奇数都是三个素数的和。偶数的猜想是说,大于等于4的偶数一定是两个素数的和。”(引自哥德巴赫猜想与潘承洞) 关于歌德巴赫猜想的难度我就不想再说什么了,我要说一下为什么现代数学界对歌德巴赫猜想的兴趣不大,以

22、及为什么中国有很多所谓的民间数学家对歌德巴赫猜想研究兴趣很大。 事实上,在1900年,伟大的数学家希尔伯特在世界数学家大会上作了一篇报告,提出了23个挑战性的问题。歌德巴赫猜想是第八个问题的一个子问题,这个问题还包含了黎曼猜想和孪生素数猜想。现代数学界中普遍认为最有价值的是广义黎曼猜想,若黎曼猜想成立,很多问题就都有了答案,而歌德巴赫猜想和孪生素数猜想相对来说比较孤立,若单纯的解决了这两个问题,对其他问题的解决意义不是很大。所以数学家倾向于在解决其它的更有价值的问题的同时,发现一些新的理论或新的工具,“顺便”解决歌德巴赫猜想。 例如:一个很有意义的问题是:素数的公式。若这个问题解决,关于素数的

23、问题应该说就不是什么问题了。 为什么民间数学家们如此醉心于哥猜,而不关心黎曼猜想之类的更有意义的问题呢? 一个重要的原因就是,黎曼猜想对于没有学过数学的人来说,想读明白是什么意思都很困难。而歌德巴赫猜想对于小学生来说都能读懂。 数学界普遍认为,这两个问题的难度不相上下。 民间数学家解决歌德巴赫猜想大多是在用初等数学来解决问题,一般认为,初等数学无法解决歌德巴赫猜想。退一步讲,即使那天有一个牛人,在初等数学框架下解决了歌德巴赫猜想,有什么意义呢?这样解决,恐怕和做了一道数学课的习题的意义差不多了。 当年柏努力兄弟向数学界提出挑战,提出了最速降线的问题。牛顿用非凡的微积分技巧解出了最速降线方程,约

24、翰柏努力用光学的办法巧妙的也解出最速降线方程,雅克布柏努力用比较麻烦的办法解决了这个问题。虽然雅克布的方法最复杂,但是在他的方法上发展出了解决这类问题的普遍办法变分法。现在来看,雅克布的方法是最有意义和价值的。编辑词条 变分法 百科名片变分法变分法(calculus of variations),是处理函数的函数的数学领域,和处理数的函数的普通微积分相对。譬如,这样的泛函可以通过未知函数的积分和它的导数来构造。变分法最终寻求的是极值函数:它们使得泛函取得极大或极小值。有些曲线上的经典问题采用这种形式表达:一个例子是最速降线,在重力作用下一个粒子沿着该路径可以在最短时间从点A到达不直接在它底下的

25、一点B。在所有从A到B的曲线中必须极小化代表下降时间的表达式。 编辑本段变分法的定理变分法的关键定理是欧拉拉格朗日方程。它对应于泛函的临界点。在寻找函数的极大和极小值时,在一个解附近的微小变化的分析给出一阶的一个近似。它不能分辨是找到了最大值或者最小值(或者都不是)。 变分法在理论物理中非常重要:在拉格朗日力学中,以及在最小作用原理在量子力学的应用中。变分法提供了有限元方法的数学基础,它是求解边界值问题的强有力工具。它们也在材料学中研究材料平衡中大量使用。而在纯数学中的例子有,黎曼在调和函数中使用狄利克雷原理。 同样的材料可以出现在不同的标题中,例如希尔伯特空间技术,莫尔斯理论,或者辛几何。变

26、分一词用于所有极值泛函问题。微分几何中的测地线的研究是很显然的变分性质的领域。极小曲面(肥皂泡)上也有很多研究工,称为Plateau问题。 最优控制的理论是变分法的一个推广。 编辑本段数学物理与变分法物理学中泛函极值问题的提出促进了变分学的建立和发展,而变分学的理论成果则不断渗透到物理学中。 物理学中的变分原理 P. de费马从欧几里得确立的光的反射定律出发提出了光的最小时间原理:光线永远沿用时最短的路径传播。他原先怀疑光的折射定律,但在1661年费马发现从他的光的最小时间原理能够推导出折射定律,不仅消除了早先的怀疑,而且更加坚信他的原理。拉格朗日把变分法用到动力学上。他引进广义坐标q1,q2,qn,假定动能T是 q=(q1,q2,qn)和孭=(

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1