1、中级计量经济学第四章习题以及解答思路EViews第4章 习题一表1给出了19651970年美国制造业利润和销售额的季度数据。假定利润不仅与销售额有关,而且和季度因素有关。要求对下列二种情况分别估计利润模型:(1)如果认为季度影响使利润平均值发生变异,应如何引入虚拟变量?(2)如果认为季度影响使利润对销售额的变化率发生变异,如何引入虚拟变量?表1利润(Y)销售额(X)利润(Y)销售额(X)1965-I1968-I12539148826II12092123968II14849158913III10834121454IIIIV12201131917IV149471684091966-I1224512
2、99111969-I14151162781II14001140976IIIII12213137828III14024172419IV12820145645IV143151833271967-I1970-I12381170415II12615145126IIIII11014141536III12174176712IV12730151776IV10985180370Quarterly 65-70Quick- Equation EstimationY c x seas(1) seas(2) seas(3)Dependent Variable: YMethod: Least SquaresDate:
3、11/26/14 Time: 18:38Sample: 1965Q1 1970Q4Included observations: 24VariableCoefficientStd. Errort-StatisticProb.C6868.0151892.7663.6285590.0018X0.0382650.0114833.3322520.0035SEAS(1)-182.1690654.3568-0.2783940.7837SEAS(2)1140.294630.68061.8080380.0865SEAS(3)-400.3371636.1128-0.6293490.5366R-squared0.5
4、25596Mean dependent var12838.54Adjusted R-squared0.425721S.D. dependent var1433.284S.E. of regression1086.160Akaike info criterion17.00174Sum squared residSchwarz criterion17.24716Log likelihood-199.0208F-statistic5.262563Durbin-Watson stat0.388380Prob(F-statistic)0.005024T和P在5%情况下都不通过,第二季度相对还好一点假设第
5、二季度显著,结果的经济含义是什么?Y c x seas(2) seas(3) seas(4)Dependent Variable: YMethod: Least SquaresDate: 11/26/14 Time: 18:47Sample: 1965Q1 1970Q4Included observations: 24VariableCoefficientStd. Errort-StatisticProb.C6685.8461711.6183.9061550.0009X0.0382650.0114833.3322520.0035SEAS(2)1322.463638.42582.0714440.
6、0522SEAS(3)-218.1681632.1991-0.3450940.7338SEAS(4)182.1690654.35680.2783940.7837R-squared0.525596Mean dependent var12838.54Adjusted R-squared0.425721S.D. dependent var1433.284S.E. of regression1086.160Akaike info criterion17.00174Sum squared residSchwarz criterion17.24716Log likelihood-199.0208F-sta
7、tistic5.262563Durbin-Watson stat0.388380Prob(F-statistic)0.005024第二季度依旧显著影响四种都试一下(去掉一个季节),选一个最显著的124Dependent Variable: YMethod: Least SquaresDate: 11/26/14 Time: 18:51Sample: 1965Q1 1970Q4Included observations: 24VariableCoefficientStd. Errort-StatisticProb.C6467.6781789.1783.6148880.0018X0.0382650
8、.0114833.3322520.0035SEAS(1)218.1681632.19910.3450940.7338SEAS(2)1540.632628.34192.4519000.0241SEAS(4)400.3371636.11280.6293490.5366R-squared0.525596Mean dependent var12838.54Adjusted R-squared0.425721S.D. dependent var1433.284S.E. of regression1086.160Akaike info criterion17.00174Sum squared residS
9、chwarz criterion17.24716Log likelihood-199.0208F-statistic5.262563Durbin-Watson stat0.388380Prob(F-statistic)0.005024134Dependent Variable: YMethod: Least SquaresDate: 11/26/14 Time: 18:52Sample: 1965Q1 1970Q4Included observations: 24VariableCoefficientStd. Errort-StatisticProb.C8008.3091827.5434.38
10、20090.0003X0.0382650.0114833.3322520.0035SEAS(1)-1322.463638.4258-2.0714440.0522SEAS(3)-1540.632628.3419-2.4519000.0241SEAS(4)-1140.294630.6806-1.8080380.0865R-squared0.525596Mean dependent var12838.54Adjusted R-squared0.425721S.D. dependent var1433.284S.E. of regression1086.160Akaike info criterion
11、17.00174Sum squared residSchwarz criterion17.24716Log likelihood-199.0208F-statistic5.262563Durbin-Watson stat0.388380Prob(F-statistic)0.005024(2)Y=c+x+1D1X+2D2X+3D3XD1=1(第一季度)0(其他)Y c x seas(1)*x seas(2)*x seas(3)*xDependent Variable: YMethod: Least SquaresDate: 11/26/14 Time: 19:00Sample: 1965Q1 1
12、970Q4Included observations: 24VariableCoefficientStd. Errort-StatisticProb.C6965.8521753.6423.9722200.0008X0.0373630.0111393.3542150.0033SEAS(1)*X-0.0008930.004259-0.2095880.8362SEAS(2)*X0.0077120.0039621.9465020.0665SEAS(3)*X-0.0022910.004041-0.5669850.5774R-squared0.528942Mean dependent var12838.5
13、4Adjusted R-squared0.429771S.D. dependent var1433.284S.E. of regression1082.323Akaike info criterion16.99466Sum squared residSchwarz criterion17.24009Log likelihood-198.9359F-statistic5.333675Durbin-Watson stat0.418713Prob(F-statistic)0.004722Dependent Variable: YMethod: Least SquaresDate: 11/26/14
14、Time: 19:10Sample: 1965Q1 1970Q4Included observations: 24VariableCoefficientStd. Errort-StatisticProb.C8008.3091827.5434.3820090.0003X0.0382650.0114833.3322520.0035SEAS(1)-1322.463638.4258-2.0714440.0522SEAS(3)-1540.632628.3419-2.4519000.0241SEAS(4)-1140.294630.6806-1.8080380.0865R-squared0.525596Me
15、an dependent var12838.54Adjusted R-squared0.425721S.D. dependent var1433.284S.E. of regression1086.160Akaike info criterion17.00174Sum squared residSchwarz criterion17.24716Log likelihood-199.0208F-statistic5.262563Durbin-Watson stat0.388380Prob(F-statistic)0.005024Dependent Variable: YMethod: Least
16、 SquaresDate: 11/26/14 Time: 19:11Sample: 1965Q1 1970Q4Included observations: 24VariableCoefficientStd. Errort-StatisticProb.C6965.8521753.6423.9722200.0008X0.0350720.0117902.9746750.0078SEAS(1)*X0.0013980.0042410.3297360.7452SEAS(2)*X0.0100030.0040682.4588230.0237SEAS(4)*X0.0022910.0040410.5669850.
17、5774R-squared0.528942Mean dependent var12838.54Adjusted R-squared0.429771S.D. dependent var1433.284S.E. of regression1082.323Akaike info criterion16.99466Sum squared residSchwarz criterion17.24009Log likelihood-198.9359F-statistic5.333675Durbin-Watson stat0.418713Prob(F-statistic)0.004722Dependent V
18、ariable: YMethod: Least SquaresDate: 11/26/14 Time: 19:11Sample: 1965Q1 1970Q4Included observations: 24VariableCoefficientStd. Errort-StatisticProb.C6965.8521753.6423.9722200.0008X0.0364710.0123532.9524150.0082SEAS(2)*X0.0086040.0042372.0305390.0565SEAS(3)*X-0.0013980.004241-0.3297360.7452SEAS(4)*X0
19、.0008930.0042590.2095880.8362R-squared0.528942Mean dependent var12838.54Adjusted R-squared0.429771S.D. dependent var1433.284S.E. of regression1082.323Akaike info criterion16.99466Sum squared residSchwarz criterion17.24009Log likelihood-198.9359F-statistic5.333675Durbin-Watson stat0.418713Prob(F-stat
20、istic)0.004722习题二表2给出了某地区某行业的库存和销售的统计资料。假设库存额依赖于本年销售额与前三年的销售额,试用Almon变换估计以下有限分布滞后模型:表2库存Y(万元)销售额X(万元)库存Y(万元)销售额X(万元)198011267 8827 199017053 13668 198112661 9247 199119491 14956 198212968 9579 199221164 15483 198312518 99 16761 198413177 109 17852 198513454 10265 199525411 17620 198613735 10299 1996
21、25611 18639 198714553 110 20672 198815011 11677 199830218 23799 198915846 12445 199936784 27359 Y=+0Xt-i+1Xt-i+2Xt-i+t3,i=0笔记11,26)在最上面输入genr z0=x+x(-1)+x(-1)+x(-3)genr z1=x(-1)+2*x(-2)+3*x(-3)genr z2=x(-1)+4*x(-2)+9*x(-3)y c z0 z1 z2Dependent Variable: YMethod: Least SquaresDate: 11/26/14 Time: 19:
22、38Sample (adjusted): 1983 1999Included observations: 17 after adjustmentsVariableCoefficientStd. Errort-StatisticProb.C-1928.495503.5272-3.8299720.0021Z00.3440270.0918483.7456150.0024Z10.8157580.3515192.3206670.0372Z2-0.3390410.128632-2.6357390.0206R-squared0.996564Mean dependent var20467.29Adjusted
23、 R-squared0.995771S.D. dependent var6997.995S.E. of regression455.0907Akaike info criterion15.28119Sum squared resid2692398.Schwarz criterion15.47724Log likelihood-125.8902F-statistic1256.768Durbin-Watson stat1.985515Prob(F-statistic)0.000000Y c PDL(x,3,2)重新回归Dependent Variable: YMethod: Least SquaresDate: 11/26/14 Time: 19:46Sample (adjusted): 1983 1999Included observations: 17 after adjustmentsVariableCoefficientStd. Errort-StatisticProb.C-1784.821498.4654-3.5806
copyright@ 2008-2022 冰豆网网站版权所有
经营许可证编号:鄂ICP备2022015515号-1