ImageVerifierCode 换一换
格式:DOCX , 页数:13 ,大小:83.44KB ,
资源ID:22881137      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/22881137.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(新教材人教B版数学必修第二册教师用书第5章 532 事件之间的关系与运算文档格式.docx)为本站会员(b****8)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

新教材人教B版数学必修第二册教师用书第5章 532 事件之间的关系与运算文档格式.docx

1、而且事件B发生时,事件A也一定发生,则称“A与B相等”ABAB且BA事件互斥给定事件A,B,若事件A与B不能同时发生,则称A与B互斥AB(或AB)事件对立给定样本空间与事件A,则由中所有不属于A的样本点组成的事件称为A的对立事件.(2)事件的和与积事件的和(并)给定事件A,B,由所有A中的样本点与B中的样本点组成的事件称为A与B的和(或并)AB或(AB)事件的积(交)给定事件A,B,由A与B中的公共样本点组成的事件称为A与B的积(或交)AB(或AB)(3)事件的混合运算因为事件运算的结果仍是事件,因此可以进行事件的混合运算(A)(B)表示的是A与B的和,实际意义是:A发生且B不发生,或者A不发

2、生且B发生,换句话说就是A与B中恰有一个发生同数的加、减、乘、除混合运算一样,事件的混合运算也有优先级,我们规定:求积运算的优先级高于求和运算,因此(AB)可简写为AB.2概率的几个基本性质(1)概率的取值范围:0,1(2)必然事件的概率为1,不可能事件的概率为0.(3)概率加法公式为:如果事件A与B为互斥事件,则P(AB)P(A)P(B)(4)若A与为对立事件,则P()1P(A)P(A)1,P(A)0.1同时掷两枚硬币,向上面都是正面为事件A,向上面至少有一枚是正面为事件B,则有()AABBABCAB DABA由事件的包含关系知AB.2给出事件A与B的关系示意图,如图所示,则()AAB BA

3、BCA与B互斥 DA与B互为对立事件C由互斥事件的定义知,A、B互斥3若A与B是互斥事件,则有()AP(A)P(B)1BP(A)P(B)1CP(A)P(B)1DP(A)P(B)1DA、B可能对立,因此P(A)P(B)1.互斥事件与对立事件的判定【例1】某县城有甲、乙两种报纸供居民订阅,记事件A为“只订甲报”,事件B为“至少订一种报纸”,事件C为“至多订一种报纸”,事件D为“不订甲报”,事件E为“一种报纸也不订”判断下列每组事件是不是互斥事件;如果是,再判断它们是不是对立事件:(1)A与C;(2)B与E;(3)B与D;(4)B与C;(5)C与E.思路探究 解(1)由于事件C“至多订一种报纸”中包

4、括“只订甲报”,即事件A与事件C有可能同时发生,故A与C不是互斥事件(2)事件B“至少订一种报纸”与事件E“一种报纸也不订”是不可能同时发生的,故B与E是互斥事件;由于事件B与事件E必有一个发生,故B与E是对立事件(3)事件B“至少订一种报纸”中包括“只订乙报”,即有可能“不订甲报”,也就是说事件B和事件D有可能同时发生,故B与D不是互斥事件(4)事件B“至少订一种报纸”中的可能情况为“只订甲报”“只订乙报”“订甲、乙两种报”事件C“至多订一种报纸”中的可能情况为“一种报纸也不订”“只订甲报”“只订乙报”也就是说事件B与事件C可能同时发生,故B与C不是互斥事件(5)由(4)的分析,事件E“一种

5、报纸也不订”是事件C中的一种可能情况,所以事件C与事件E可能同时发生,故C与E不是互斥事件互斥事件和对立事件的判定方法(1)利用基本概念,要判断两个事件是不是互斥事件,只需要找出各个事件所包含的所有结果,看它们之间能不能同时发生,在互斥的前提下,看两个事件中是否必有一个发生,可判断是否为对立事件.注意辨析“至少”“至多”等关键词语的含义,明晰它们对事件结果的影响.(2)利用集合观点,设事件A与B所含的结果组成的集合分别为A,B.若事件A与B互斥,则集合AB;若事件A与B对立,则集合AB且AB.1一个射手进行一次射击,有下面四个事件:事件A:命中环数大于8;事件B:命中环数小于5;事件C:命中环

6、数大于4;事件D:命中环数不大于6.则()AA与D是互斥事件BC与D是对立事件CB与D是互斥事件 D以上都不对A由互斥、对立事件的定义可判断A选项正确事件的关系及运算【例2】在掷骰子的试验中,可以定义许多事件例如,事件C1出现1点,事件C2出现2点,事件C3出现3点,事件C4出现4点,事件C5出现5点,事件C6出现6点,事件D1出现的点数不大于1,事件D2出现的点数大于3,事件D3出现的点数小于5,事件E出现的点数小于7,事件F出现的点数为偶数,事件G出现的点数为奇数,请根据上述定义的事件,回答下列问题:(1)请列举出符合包含关系、相等关系的事件;(2)利用和事件的定义,判断上述哪些事件是和事

7、件解(1)因为事件C1,C2,C3,C4发生,则事件D3必发生,所以C1D3,C2D3,C3D3,C4D3.同理可得,事件E包含事件C1,C2,C3,C4,C5,C6;事件D2包含事件C4,C5,C6;事件F包含事件C2,C4,C6;事件G包含事件C1,C3,C5.且易知事件C1与事件D1相等,即C1D1.(2)因为事件D2出现的点数大于3出现4点或出现5点或出现6点,所以D2C4C5C6(或D2C4C5C6)同理可得,D3C1C2C3C4,EC1C2C3C4C5C6,FC2C4C6,GC1C3C5.1两个事件之间的关系有包含关系、相等关系、互为互斥事件、互为对立事件,判断两个事件的关系,只需

8、要根据这些关系的定义进行判断即可. 2进行事件的运算时,一是要紧扣运算的定义,二是要全面考虑同一条件下的试验可能出现的全部结果,必要时可列出全部的试验结果进行分析也可类比集合的关系和运算用韦恩图分析事件2盒子里有6个红球,4个白球,现从中任取3个球,设事件A3个球中有1个红球、2个白球,事件B3个球中有2个红球、1个白球,事件C3个球中至少有1个红球,事件D3个球中既有红球又有白球(1)事件D与A,B是什么样的运算关系?(2)事件C与A的交事件是什么事件?解(1)对于事件D,可能的结果为1个红球、2个白球,或2个红球、1个白球,故DAB.(2)对于事件C,可能的结果为1个红球、2个白球,或2个

9、红球、1个白球,或3个红球,故CAA.互斥事件与对立事件的概率公式及应用探究问题1在同一试验中,对任意两个事件A、B,P(AB)P(A)P(B)一定成立吗?提示不一定,只有A与B互斥时,P(AB)P(A)P(B)才成立2若P(A)P(B)1,则事件A与事件B是否一定对立?试举例说明提示A与B不一定对立例如:掷一枚均匀的骰子,记事件A为出现偶数点,事件B为出现1点或2点或3点,则P(A)P(B)1,但A、B不对立【例3】在数学考试中,小明的成绩在90分(含90分)以上的概率是0.18,在80分89分(包括89分,下同)的概率是0.51,在70分79分的概率是0.15,在60分69分的概率是0.0

10、9,在60分以下的概率是0.07,计算:(1)小明在数学考试中取得80分以上的成绩的概率;(2)小明数学考试及格的概率(60分及60分以上为及格)思路探究小明的成绩在80分以上可以看作是互斥事件“80分89分”“90分以上”的并事件,小明数学考试及格可看作是“60分69分”“70分79分”“80分89分”“90分以上”这几个彼此互斥事件的并事件,又可看作是“不及格”这一事件的对立事件解分别记小明的成绩“在90分以上”“在80分89分”“在70分79分”在“60分69分”为事件B,C,D,E,这四个事件彼此互斥(1)小明的成绩在80分以上的概率是P(BC)P(B)P(C)0.180.510.69

11、.(2)法一:小明数学考试及格的概率是P(BCDE)P(B)P(C)P(D)P(E)0.180.510.150.090.93.法二:小明数学考试不及格的概率是0.07,所以小明数学考试及格的概率是10.070.93.1(变结论)本例条件不变,求小明在数学考试中取得80分以下的成绩的概率解分别记小明的成绩“在90分以上”,“在8089分”“在7079分”“在6069分”在“60分以下”为事件A、B、C、D、E,则这五个事件彼此互斥小明成绩在80分以下的概率是:P(CDE)0.150.090.070.31.2(变条件)一盒中装有各种色球12个,其中5个红球、4个黑球、2个白球、1个绿球从中随机取出

12、1球,求:(1)取出1球是红球或黑球的概率;(2)取出的1球是红球或黑球或白球的概率解法一:(利用互斥事件求概率)记事件A1任取1球为红球,A2任取1球为黑球,A3任取1球为白球,A4任取1球为绿球,则P(A1),P(A2),P(A3),P(A4).根据题意知,事件A1,A2,A3,A4彼此互斥,由互斥事件概率公式,得(1)取出1球为红球或黑球的概率为P(A1A2)P(A1)P(A2)(2)取出1球为红球或黑球或白球的概率为P(A1A2A3)P(A1)P(A2)P(A3)(利用对立事件求概率)(1)由法一知,取出1球为红球或黑球的对立事件为取出1球为白球或绿球,即A1A2的对立事件为A3A4,

13、所以取得1球为红球或黑球的概率为P(A1A2)1P(A3A4)1P(A3)P(A4)1(2)A1A2A3的对立事件为A4.所以P(A1A2A3)1P(A4)11只有当A、B互斥时,公式P(AB)P(A)P(B)才成立;只有当A、B互为对立事件时,公式P(A)1P(B)才成立2复杂的互斥事件概率的求法有两种:一是直接求解,将所求事件的概率分解为一些彼此互斥的事件的概率的和,运用互斥事件的概率加法公式计算;二是间接求解,先找出所求事件的对立事件,再用公式P(A)1P()求解(教师独具)1本节课的重点是了解事件间的包含关系和相等关系理解互斥事件和对立事件的概念及关系,难点是了解并利用两个互斥事件的概

14、率加法公式解题2本节课要掌握以下几方面的规律方法(1)判断两事件互斥、对立的两个步骤(2)事件间运算的方法(3)用概率加法公式解题的步骤及求复杂事件概率的两种方法3本节课的易错点(1)混淆互斥、对立事件概念致错(2)分不清事件间的关系而错用公式导致解题失误1思考辨析(1)互斥事件一定是对立事件()(2)事件A与B的并事件的概率一定大于事件A的概率()(3)若P(A)P(B)1,则事件A与B一定是对立事件()答案(1)(2)(3)2P(A)0.1,P(B)0.2,则P(AB)等于()A0.3 B0.2C0.1 D不确定D因为A与B的关系不确定,故P(AB)的值不能确定3一箱灯泡有50个,合格率为

15、90%,从中任意拿一个,它是次品的概率是()A10% B90%C20% D100%A从中任意拿一个,不是合格品就是次品,两者必有一个发生,而且也只能有一个发生,符合对立事件的定义,因此运用对立事件的概率加法公式得P(次品)1P(合格)190%10%.4从40张扑克牌(红桃、黑桃、方块、梅花点数从110各10张)中任抽取1张,判断下列给出的每对事件是否为互斥事件,是否为对立事件,并说明理由(1)“抽出红桃”与“抽出黑桃”;(2)“抽出红色牌”与“抽出黑色牌”;(3)“抽出牌的点数为5的倍数”与“抽出牌的点数大于9”解(1)是互斥事件,不是对立事件理由是:从40张扑克牌中任意抽取1张,“抽出红桃”和“抽出黑桃”是不可能同时发生的,所以是互斥事件同时,不能保证其中必有一个发生,这是由于还可能抽出“方块”或者“梅花”,因此二者不是对立事件(2)既是互斥事件,又是对立事件理由是:从40张扑克牌中任意抽取1张,“抽出红色牌”与“抽出黑色牌”两个事件不可能同时发生,且其中必有一个发生,因此它们既是互斥事件,又是对立事件(3)不是互斥事件,当然不可能是对立事件理由是:从40张扑克牌中任意抽取1张,“抽出牌的点数为5的倍数”与“抽出牌的点数大于9”这两个事件可能同时发生,如抽出牌的点数为10,因此,二者不是互斥事件,当然不可能是对立事件

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1