1、例3 有这样一列数,1,2,3,499,100。请你写出这列数各项相加的和。分析 如果我们把数列1,2,3,499,100与数列100,99,98,972,1进行相加,相当于采用两两配对的方法进行求和,并且每对的和为101,共有100个这样的对,从而可以得到所求数列的和。例4 求等差数列2、4、648、50的和。分析 这个数列是公差为2的等差数列,可以根据公式之间计算。注意:要求一数列的和需要先求出项数。练习:1、 等差数列中,首项为1,末项为39,公差为2,这个等差数列共有多少项?2、 有一个等差数列:2、5、8、11101,这个等差数列共有多少项?3、 已知等差数列11、16、21、261
2、001,问这个数列共有多少项?4、 一等差数列,首项为3,公差为2,项数是10,求它的末项是多少?5、 求数列1、5、9、13这个等差数列的第20项。6、 求等差数列1、4、7、10这个等差数列的第30项。7、 求等差数列2、6、10、14这个等差数列的第100项。8、 计算下面各题:(1)12344950(2)678975(3)2610141822(4)17192139;(5)58111450巧妙求和(二)某些问题,可以转化为求若干个数的和,在解决这些问题时,同样要先判断是否求某个等差数列的和。如果是等差数列求和,才可以用等差数列求和公式计算。在解决自然数的数字问题时,应根据题目的具体特点,
3、有时可以考虑将题中的数适当分组,并将每组中的数合理配对,使问题得以顺利解决。例1 小林读一本长篇小说,他第一天读30页,从第二天起他每天读的页数都比前一天多3页,第11天读了60页,正好读完,这本书共有多少页?分析 根据“他每天读的页数都比前一天多3页”可以知道他每天的读的页数是按照一定的规律排列的数,即30、33、3657、60。要求这本书共有多少页就是求出这列数的和。这列数是一个等差数列,首项是30,末项是60,项数是11,因此可以根据等差数列的公式求解总和。例2 一些同样粗细的圆木,像如图所示的一样均匀的堆放在一起,已知最下面一层有70根,那么一共有多少根圆木?分析 根据图可以发现这是一
4、个公差是1的等差数列,首项是1,末项是70,要求一共有多少根圆木,其实就是求这个等差数列的和。可以根据通项公式求解计算。例3 30把锁的钥匙搞乱了,为了使每把锁都配上自己的钥匙,至多要试多少次?分析 开第一把锁时如果不凑巧,试了29把钥匙都还不行,那么剩下的一把就一定能把它打开,即开第一把锁至多需要29次,同样的,开第二把锁至多需要试28次,开第三把锁至多需要试27次等打开第29把锁时,剩下的一把就不用试了,一定能打开。所以,至多需要2928271次,从而将实际问题转化成了等差数列的求和问题。例4 某班有51个同学,毕业时每人都和其他的每个人握一次手,那么共握了多少次手?分析 假设51个同学排
5、成一排,第一个人依次和其他人握手,一共握了50次,第二个人依次和剩下的人握手,共握了49次,第三个人握了48次,依此类推,第50个人和剩下的人握了一次手,这样他们握手的次数如下:50、49、48、2、1。例5 求199个连续自然数的所有数字之和。分析 注意首先要求的是99个连续自然数的数字之和,而不是求着99个数的和。为了能方便求解,我们不妨把0算进来(它不影响我们求数字之和),计算099这100个数字之和,这100个数头尾两两配对后每两个数字之和都相等,都是99=18,一共有1002=50对,所以199个连续自然数的所有数字之和是1850=900。1、 刘师傅做一批零件,第一天做了20个,以
6、后每天都比前一天多做2个,第15天做了48个,正好做完,这批零件共有多少个?2、 莉莉学英语单词,第一天学会了6个,以后每天都比前一天多学了1个,最后一天学会了16个,莉莉在这些天中学会了多少个单词?3、 用相同的小立方体摆成如右图所示的图形,那么第10层有多少个小立方体4、 有80把锁的钥匙搞乱了,为了使每把锁都配上自己的钥匙,至多要试多少次?5、 有一些锁的钥匙搞乱了,已知至多要试28次,就能使每把锁有配上自己的钥匙,问一共有几把锁的钥匙搞乱了?6、 学校进行乒乓球比赛,每个参赛选手都要和其他所有的参赛选手各赛一场,如果有21人参加比赛,问一共要进行多少场比赛?7、 一次同学聚会中,参加的
7、有43位同学和4位老师,每一位同学或老师都要和其他同学握手一次手。那么一共握了多少次?8、 求1199的199个连续自然数的所有数字之和。9、 求1999的999个连续自然数的所有数字之和。加法乘法原理与几何计算知 识 点 梳 理1、 加法原理:如果完成一项任务有n类方法,在第一类方法中有m1种不同方法,在第二类方法中有m2种不同方法,在第n类方法中有mn种不同方法,那么完成这项任务共有:m1+ m2. +mn种不同的方法。关键问题:确定工作的分类方法。基本特征:每一种方法都可完成任务。2、 乘法原理:如果完成一项任务需要分成n个步骤进行,做第1步有m1种方法,不管第1步用哪一种方法,第2步总
8、有m2种方法不管前面n-1步用哪种方法,第n步总有mn种方法,那么完成这项任务共有:m1m2. mn种不同的方法。确定工作的完成步骤。每一步只能完成任务的一部分。例1、从南通到上海有两条路可走,从上海到南京有三条路可走。王叔叔从南通经过上海到南京去,有几种方法?分析:用图中的序号表示其中的5条路。可以将王叔叔的各种走法根据线路示意图一一列举出来。例2 、用红、黄、蓝三种信号灯组成一种信号,可以组成多少种不同的信号?要使信号不同,就要求每一种信号颜色的顺序不同,把这些不同的信号一一列举出来即可。例3、有三张数字卡片,分别为3,6,0。从中挑出两张排成一个两位数,一共可以排成多少个两位数?排成时要
9、注意“0”不能排在最高位,从而可以进行分类考虑:当十位上是6或者是3时所得数的个数。例4、 从18这八个数中,每次取两个数,要使它们的和大于8,有多少种取法?为了既不重复又不遗漏的统计出结果,应该按一定的顺序分类列举,可以按照“几+8,几+7,几+6,几+5”的顺序来思考。例5、 在一次足球比赛中,4个对进行循环赛,需要比赛多少场?4个队进行循环赛,也就是说4个队每两个队都要赛一场,设4个队分别为A、B、C、D可将他们两两比赛的情况列举出来。例6、用0、5、4、9排成各位数字不同的三位数,共可以排成多少个?其中最小的数是多少?最大的数是多少?要排成各位数字不同的三位数,我们知道这个数的首位一定
10、不能是0,因此首位数字只能是5、4、9共有三种情况,首位选定后,只剩下三个数字了,十位数字就可以从这剩下的三个数中选取,共有三种情况,同样地,十位选好后只剩下两个数字了,各位数字就只能从这两个数字中选取了,只有两种情况,最后运用乘法原理可以求出结果。1. 从甲地到乙地,有两条直达铁路和四条直达公路,那么从甲地到乙地有多少种不同的走法?2从甲地到乙地有两条直达铁路,从乙地到丙地有四条直达公路,那么从甲地到丙地有多少种不同的走法?3甲、乙、丙三个同学排成一排,有几种不同的排法?4. 用8、6、3、0这四个数字,可以组成多少个不同的三位数?最大的一个是多少?5从16这六个数字中,每次取两个数,要使它
11、们的和大于6,有多少种取法?6在一次乒乓球比赛中,参加比赛的对进行循环赛,一共赛了28场,问共有几个队参加比赛?7用0、1、3、4、5排成各位数字不同的四位数,共可以排成多少个?8从110这十个数中,每次取两个数,要使它们的和大于10,有多少种取法?巧数图形1、直线:一点在直线或空间沿一定方向或相反方向运动,形成的轨迹。线段:直线上任意两点间的距离。这两点叫端点。射线:把直线的一端无限延长。2、直线特点:没有端点,没有长度。线段特点:有两个端点,有长度。射线特点:只有一个端点;没有长度。3、数线段规律:总数1+2+3+(点数一1);数角规律:总数=1+2+3+(射线数一1);数长方形规律:个数
12、=长的线段数宽的线段数:数正方形规律:个数=11+22+33+行数列数例1、数出下面图形有多少条线段。要正确解答这类问题,需要按照一定的顺序来数,做到不重复、不遗漏,因此我们可以分别从A点、B点、C点出发数线段。想一想:请你数一数下面图中各有多少条线段?(注意:线段都是直的) 例2、数一数图中有多少个锐角。数角的方法和数线段的方法类似,图中的5条射线相当于线段上的5个点,因此要求图中有多少个锐角可根据公式求解。例3、数一数下图中各有多少个三角形。 前图中AD边上的每条线段与顶点O构成了一个三角形,也就是说AD边上有几条线段就构成了几个三角形;后图与前图相比,后图中多了一条线段,三角形的个数应是
13、AD和上面的线段与点O所围成的三角形个数的和。想一想下图中共有多少个三角形?例4、 数一数图中有多少个长方形。 图1 图2数长方形与数线段的方法类似,图1中长方形的个数取决于AB或CD边上的线段;图2可以先算出AB边上的线段数,再把AB边上的每条线段作为长,AD边上的每条线段作为宽,每一个长配一个宽就组成长方形。例5、数一数图中有多少个正方形(每个小方格为边长是1的正方形)。图中边长是1个单位长度的正方形有33=9(个),边长是2个单位长度的正方形有22=4(个),边长是3个单位长度的正方形有11=1(个)。所以图中的正方形总数为13=14(个)。经进一步分析可以发现,有相同的nn个小方格组成
14、的n行n列的正方形其中的小正方形总数为:13+nn。例6 从广州到北京的某次快车中途要停靠8个大站,铁路局要为这次快车准备多少种不同的车票?这些车票中有多少种不同的票价?这道题是数线段的方法在实际生活中的应用,连同广州、北京在内,这条铁路上共有10个站,共有1+2+3+8+9=45(条)线段,因此,要准备45种不同的车票,由于这些车站之间的距离各不相同,因此,有多少种不同的车票,就有多少种不同的票价,所以有45种不同的票价。你能在生活中找到一些能够转化为数线段问题的例子吗?请你回答下面两个问题:(1)、在一次篮球比赛中,6个队进行循环赛,需要比赛多少场? (2)10个好朋友两两握手,一共可以握
15、多少次?思考题:例7 下图中共有多少个三角?为了保证不漏数而又不重复,我们可以分类来数三角形,分为包含有1个、2个、3个、6个小三角形组合成的三角形个数,然后再把各类三角形的个数相加。例8 数出右图中所有三角的个数。同位置的三角形一起数,例如:AFG、BGM、CIM、DIJ、JEF是同类。例9 数一数,下图中共有多少个三角形。1. 数下列图形中分别有多少条线段。2.下列图形中,各有多少个角? 3.下列图形中各有多少个三角形?4数一数下图中各有多少个长方形。5下列图形中各有多少个正方形?6(1)从上海到青岛的某次直快列车,中途停靠6个大站,这次列车有几种不同的票价?(2)从成都到南京的快车,中途
16、停靠9个大站,有几种不同的票价?7数出下面图中分别有多少个三角形。8. 图中共有( )个三角形。和倍问题1、和倍问题:已知两个数的和与它们之间的倍数关系,求这两个数各是多少的问题叫做和倍问题。2、基本数量关系:例1、学校有科技书和故事书共480本,科技书的本数是故事书的3倍,两种书各有多少本?为了便于理解题意,我们画图来分析:如果把故事书的本数看作1份,那么科技书的本数就是这样的3份,两种书的总份数是份,可以把480本书平均分成份,1份是故事书的本数,3份就是科技书的本数。例2、果园里有梨树、桃树和苹果树共1200棵,其中梨树的棵树是苹果树的3倍,桃树的棵树是苹果树的4倍,求梨树、桃树和苹果树
17、各有多少棵?如果把苹果树的棵树看作1份,三种树的总棵树共有份,从而可以算出苹果树的棵树,再求出梨树和桃树的棵树。例3、有3个书橱共放了330本书,第二个书橱里的书是第一个的2倍,第三个书橱里的书是第二个的4倍,每个书橱里各放了多少本书?把第一个书橱里的本数看作1份,那么第二个书橱里的本数是这样的2份,第三个就是这样的份,三个书橱里的总本数是这样的份,所以第一个书橱里放了本书,再求出第二个、第三个里放的书即可。例4、少先队员种柳树和杨树共216棵,杨树的棵树比柳树的3倍多20棵,两种树各种了多少棵?如果杨树少种20棵,那么杨树和柳树的总棵树是棵,这时杨树的棵树恰好是柳树的倍,于是柳树的棵树与杨树
18、的棵树都可以算出来。例5、三个筑路队共筑路1360米,甲队筑的米数是乙队的2倍,乙队比丙队多240米,三个队各筑了多少米?把乙队的米数看作是1份,甲队筑的米数是这样的2份,假设丙队多筑了240米,三队共筑了米,正好是乙队的倍,再算丙队筑的米数。1. 一块长方形的黑板的周长是96分米,长是宽的3倍,这块长方形黑板的长和宽是多少分米?2甲、乙、丙三数的和是360,又知甲为乙的3倍,丙为乙的2倍,求甲、乙、丙各是多少?3三块钢板共重621千克,第一块的重量是第二块的3倍,第二块的重量是第三块的2倍。三块钢板各重多少千克?4小花和小明参加数学竞赛,两人共得168分,小花的得分比小明的2倍少42分,两人
19、各得了多少分?5三个植树队共植树1900棵,甲队植树的棵树是乙队的2倍,乙队比丙队少300棵,三个队各植了多少棵?6全校共有777人参加三个兴趣小组,其中参加美术组的人数是风筝组的5倍,参加风筝组的人数是音乐组的6倍。参加这三个兴趣小组的分别有多少人?7春华小学共有学生212人,其中男生人数比女生人数的2倍少55人,春华小学有男生、女生各多少人?8希望小学新买进篮球、足球和排球共58只,排球的只数是足球的2倍,篮球比足球少6只。篮球、足球和排球各买进多少只?长方形、正方形的周长我们知道,长方形、正方形的周长公式只能用来计算标准的长方形和正方形的周长。如何用所学的知识巧妙求出表面上看起来不是长方
20、形或正方形的图形的周长,还需要灵活运用所学知识,掌握转化的思考方法,把复杂的问题转化为标准的图形,以便计算他们的周长。公式:长方形的周长=(长+宽) 正方形的周长=边长4例题1.一块长方形木板,沿着它的长度不同的两条边各截去4厘米,截掉的总面积为192平方厘米。现在这块木板的周长是多少厘米?把截掉的192平方厘米分成A、B、C三块(如图),可先计算出A与B的和,把A、B移到一起拼成一个宽4厘米的长方形,因此长方形的长就是这块木板剩下的部分的周长的一半。例题2.求右图的周长。(单位:厘米)例题3、如右图的正方形分成甲、乙两部分,下面哪几句话正确的?A 甲的周长比乙大B 甲乙周长相等 C 甲的面积
21、比乙大 D 甲乙面积相等可以从图中直接得出甲乙两图的大小关系。例题4、如下图,阴影部分是正方形,DF=6厘米,AB=9厘米。求最大的长方形的周长。根据题意,可分析出最大长方形的宽就是正方形的边长。因为BC=EF,CF=DE,所以,AB+BC+CF=AB+FE+ED=9+6=15(厘米)。1、有一个长方形,如果长减少4米,宽减少2米,面积就比原来减少44平方米,且剩下部分正好是一个正方形,求这个正方形的周长。2、有两个相同的长方形,长是8厘米,宽是3厘米,如果按右图所示叠放在一起,这个图形的周长是多少?3、求下列图形的周长 (单位:厘米)。4、一个长12厘米,宽2厘米的长方形和两个正方形正好拼成
22、下图长方形,求所拼长方形的周长。5、有一张长40厘米,宽30厘米的硬纸板,在四个角上各剪去一个同样大小的正方形后准备做一个长方体纸盒,求被剪后硬纸板的周长。6、右图是边长为4厘米的正方形,求正方形中阴影部分的周长。7、在一个长方形硬纸板的一角任意剪去一个正方形,剩下的图形的周长发生了怎样的变化?8、有2个相同的长方体,长7厘米,宽3厘米,如下图重叠着,求重叠图形的周长。图形问题图形问题主要是解决图形的面积问题的。在解决图形问题时应该先从整体上观察图形的特征,掌握图形的本质,找出图中隐藏的条件,然后将图形进行合理的切拼,从而使问题得以顺利的解决。例1、 人民路小学操场长90米,宽45米,改造后,
23、长增加10米,宽增加5米。现在操场面积比原来增加了多少平方米?例2、 一个长方形,如果宽不变,长增加6米,那么它的面积增加54平方米,如果长不变,宽减少3米,那么它的面积减少36平方米,这个长方形原来的面积是多少平方米?由“如果宽不变,长增加6米,那么它的面积增加54平方米”可以求出它的宽;又由“如果长不变,宽减少3米,那么它的面积减少36平方米”可以知道它的长,从而可以求出原来正方形的面积。例3 、下图是一个养禽专业户用一段长16米的篱笆围成的一个长方形养鸡场,求占地面积有多大?因为一面利用着墙,所以两条长加一条宽等于16米,而宽已知,可以求出长,再计算面积。例4 、街心花园中一个正方形的花
24、坛四周有1米宽的水泥路,如果水泥路的总面积是12平方米,中间花坛的面积是多少平方米?把正方形分成如图所示的四个同样大小的长方形,因此一个长方形的面积是124=3平方米。因为水泥路宽1米,所以小长方形的长是31=3米,从图中可以看出正方形的花坛的边长是小正方形长与宽的差,所以小正方形的边长是31=2米,中间花坛的面积就可以计算出来了。例5 、 一块正方形的钢板,先截去宽5分米的长方形,又截去宽8分米的长方形:(如图)面积比原来的正方形减少181平方分米,原正方形的边长是多少?把阴影部分剪下来的两小长方形拼合起来(如图),再补上长、宽分别是8分米、5分米的小长方形,这个拼合成的长方形的面积是181
25、+85=221(平方分米),长是原来正方形的边长,宽是8+5=13分米。所以原来正方形的边长是22113=17分米。1.有一块长方形的木板,长22分米,宽8分米,如果长和宽分别减少10分米、3分米,面积比原来减少多少平方分米?2一块长方形铁板,长18分米,宽13分米,如果长和宽各减少2分米,面积比原来减少多少平方分米?3一个长方形,如果宽不变,长减少3米,那么它的面积减少24平方米,如果长不变,宽增加4米,那么它的面积增加60平方米,这个长方形原来的面积是多少平方米?4一个长方形,如果宽不变,长增加5米,那么它的面积增加30平方米,如果长不变,宽增加3米,那么它的面积增加48平方米,这个长方形
26、原来的面积是多少平方米?5下图1是一个养禽专业户用一段长13米的篱笆围成的一个长方形养鸡场,求养鸡场的占地面积有多大?图1 6.用56米长的木栏围成长或宽是20米的长方形,其中一边利用围墙,怎样才能使围成的面积最大?7. 有一个正方形的水池,如图2的阴影部分,在它的周围修一个宽8米的花池,花池的面积的480平方米,求水池的边长?图28. 一个正方形一条边减少6分米,另一条边减少10分米后变为一个长方形,这个长方形的面积比正方形的面积少260平方分米,求原来正方形的边长?逻辑推理基本方法:排除法、假设法、反证法、列表法、图表法。解题步骤:1、选准突破口。2、逐步推理,排除不可能的情况。3、对可能
27、出现的情况作出假设,并判断是否真确。例1 、有三个小朋友再谈论谁做的好事多。东东说:“兰兰做的比芳芳多。”兰兰说:“东东做的比芳芳多。”芳芳说:“兰兰做的比东东少。”这三位小朋友中,谁做的好事最多?谁做的好事最少?例2 、一个正方体,六个面上分别写上ABCDEF,你能根据这个正方体的不同的摆法,求出相对的两个面的字母是什么吗?如果找不出他们相对的是什么,可以先找他们相邻的是什么,再用排除法解题。例3、 甲、乙、丙三个孩子踢球打碎了玻璃窗,甲说:“是丙打碎的”。乙说:“我没有打碎玻璃窗”,丙说:“是乙打碎的。”他们当中只有一个说了谎话,到底是谁打碎了玻璃窗?由题意可知,只有一个人说谎话,而乙和丙的话正好是相反的,因此必然是一对一错,可以以此作为假设的出发点,推理时可以先假设乙说的话是错的,那么甲和丙的话都是实话,但是出现了矛盾,因此我们可以再次假设乙的话的对的,那么丙的话就是错的,从而可以得出玻璃是丙打碎的,再验证一下,看结论和条件是否矛盾,再得出正解。
copyright@ 2008-2022 冰豆网网站版权所有
经营许可证编号:鄂ICP备2022015515号-1