ImageVerifierCode 换一换
格式:DOCX , 页数:13 ,大小:337.94KB ,
资源ID:21872475      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/21872475.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2DPSK调制系统的设计Word文档下载推荐.docx)为本站会员(b****5)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

2DPSK调制系统的设计Word文档下载推荐.docx

1、 摘 要 本课设设计了差分编码移相键控(2DPSK)调制解调系统的工作流程图,并利用 MATLAB 软件对该的动态进行了模拟仿真。利用仿真的结果,从基带信号的波形图可以衡量数字信号的传输质量。由系统的输入和输出波形图可以看出,仿真实验过程良好。2DPSK调制解调系统的仿真设计,为以后我们进一步研究基于MATLAB的通信实验仿真系统奠定了坚实的基础。关键词 调制解调 、 差分移相编码 、 仿真设计目录一、2DPSK基本原理 31.1 2DPSK信号原理 31.2 2DPSK信号的调制原理 31.3 2DPSK信号的解调原理 4二、建立模型 62.1 差分和逆差分变换模型 62.2 带通滤波器和低

2、通滤波器的模型 62.3 抽样判决器模型 62.4 结构图 6三、仿真 83.1 2DPSK模拟调制和差分相干解调法仿真图 83.2调试过程及结论 9课设总结 11参考文献 12附录 13 一、2DPSK基本原理1.1 2DPSK信号原理 2DPSK方式即是利用前后相邻码元的相对相位值去表示数字信息的一种方式。现假设用表示本码元初相与前一码元初相之差,并规定:0表示0码,表示1码。则数字信息序列与2DPSK信号的码元相位关系可举例表示如2PSK信号是用载波的不同相位直接去表示相应的数字信号而得出的,在接收端只能采用相干解调,它的时域波形图如图1所示。 图1 2DPSK信号 在这种绝对移相方式中

3、,发送端是采用某一个相位作为基准,所以在系统接收端也必须采用相同的基准相位。如果基准相位发生变化,则在接收端回复的信号将与发送的数字信息完全相反。所以在实际过程中一般不采用绝对移相方式,而采用相对移相方式。定义 为本码元初相与前一码元初相之差,假设: 数字信息“0”; 数字信息“1”。则数字信息序列与2DPSK信号的码元相位关系可举例表示如下:数字信息: 1 0 1 1 0 1 1 1 0 1DPSK信号相位:0 或:pi 1.2 2DPSK信号的调制原理 一般来说,2DPSK信号有两种调试方法,即模拟调制法和键控法。2DPSK信号的的模拟调制法框图如图2所示,其中码变换的过程为将输入的单极性

4、不归零码转换为双极性不归零码。eo(t) 图2 模拟调制法 2DPSK信号的的键控调制法框图如图3所示,其中码变换的过程为将输入的基带信号差分,即变为它的相对码。选相开关作用为当输入为数字信息“0” 时接相位0,当输入数字信息为“1”时接pi。图3 键控法调制原理图1.3 2DPSK信号的解调原理 2DPSK信号最常用的解调方法有两种,一种是极性比较和码变换法,另一种是差分相干解调法。1.3.1 2DPSK信号解调的极性比较法 它的原理是2DPSK信号先经过带通滤波器,去除调制信号频带以外的在信道中混入的噪声,再与本地载波相乘,去掉调制信号中的载波成分,再经过低通滤波器去除高频成分,得到包含基

5、带信号的低频信号,将其送入抽样判决器中进行抽样判决的到基带信号的差分码,再经过逆差分器,就得到了基带信号。它的原理框图如图4所示。延迟T带通滤波器图 4 极性比较解调原理图1.3.2 2DPSK信号解调的差分相干解调法 差分相干解调的原理是2DPSK信号先经过带通滤波器,去除调制信号频带以外的在信道中混入的噪声,此后该信号分为两路,一路延时一个码元的时间后与另一路的信号相乘,再经过低通滤波器去除高频成分,得到包含基带信号的低频信号,将其送入抽样判决器中进行抽样判决,抽样判决器的输出即为原基带信号。它的原理框图如图5所示。2DPSK 图 5 差分相干解调原理图 仿真中我们采用相干解调法进行2DP

6、SK解调,解调电路中有带通滤波器、相乘器、低通滤波器、抽样判决器及码反变换组成。2DPSK相干解调原理是:对2DPSK信号进行相干解调,恢复出相对码,再通过码反变换为绝对码,从而恢复出发送的二进制数字信息。 二、建立模型2.1 差分和逆差分变换模型差分变换模型的功能是将输入的基带信号变为它的差分码。逆码变换器原理图如下:图6 原理方框图2.2 带通滤波器和低通滤波器的模型带通滤波器模型的作用是只允许通过(fl,fh)范围内的频率分量、但将其他范围的频率分量衰减到极低水平。低通滤波器模型的作用是只允许通过(0,fh)范围内的频率分量,并且将其他范围的频率分量衰减到极低水平。在MATLAB中带通滤

7、波器和低通滤波器的模型可以用编写程序来模拟。2.3 抽样判决器模型抽样判决器的功能是根据位同步信号和设置的判决电平来还原基带信号。在Matlab中抽样判决器可以用simulink中的模块来模拟。它的模型框图如图所示,它的内部结构图如图7所示。 图 7 抽样判决器2.4 结构图2.4.1 系统结构图 图 图8 系统结构图2.4.2 2DPSK调制与解调总原理框图 图 9 2DPSK调制与解调总原理框图三、仿真3.1 2DPSK模拟调制和差分相干解调法仿真图图10 原始信号与调制后的信号 图11 2DPSK模拟调制和差分相干解调法仿真图3.2调试过程及结论2DPSK信号经相关模块调试后的波形图如下

8、: 图12 原始信号与调制后的信号 调制过后加入高斯白噪声,连接到带通滤波器,去除调制信号以外的在信道中混入的噪声,再连接到相乘器。此相乘器是一路延时一个码元时间后与另一路信号相乘。作用是去除调制信号中的载波成分。信号经过低通滤波器后,去除高频成分,得到包含基带信号的低频信号。经过抽样判决,便还原成原始信号。 图13 2DPSK模拟调制和差分相干解调法仿真图 课设总结 本次创新课程设计在刚开始的过程中无从下手,手忙脚乱,时间又紧,最终决定用软件仿真来实现2DPSK调制解调的设计。通过本课程的学习我们不仅能加深理解和巩固理论课上所学的有关DPCM编码和解码的基本概念、基本理论和基本方法,而且能锻

9、炼我们分析问题和解决问题的能力,同时对我们进行良好的独立工作习惯和科学素质的培养,为今后参加科学工作打下良好的基础。 通过这次课程设计我们能够比较系统的了解理论知识,掌握了2DPSK调制解调的工作原理及2DPSK调制解调系统的工作过程,学会了使用仿真软件MATLAB,并学会通过应用软件仿真来实现某些通信系统的设计,对以后的学习和工作都起到了一定的作用,加强了动手能力和学业技能。通过这次课程设计还让我们知道了,我们平时所学的知识如果不加以实践的话等于纸上谈兵。课程设计主要是我们理论知识的延伸,它的目的主要是要在设计中发现问题,并且自己要能找到解决问题的方案,形成一种独立的意识。我们还能从设计中检

10、验我们所学的理论知识到底有多少,巩固我们已经学会的,不断学习我们所遗漏的新知识,把这门课学的扎实。当然在做课程设计的过程中总会出现各种问题,在这种情况下我们都会努力寻求最佳路径解决问题,无形间提高了我们的动手,动脑能力,并且同学之间还能相互探讨问题,研究解决方案,增进大家的团队意识。总的来说,这次课程设计让我们收获颇多,不仅让我们更深一步理解书本的知识,提高我们分析问题和解决问题的能力,而且让我们体会到团队的重要性。 参考文献 1 樊昌信.通信原理(第5版).国防工业大学出版社,20012 曹志刚.现代通信原理 .清华大学出版社,20023 刘学勇.通信系统建模与仿真.电子工业出版社 ,200

11、1.4 邓华.MATLAB通信仿真及应用实例详解出M.人民邮电出版社5 李建新.现代通信系统分析与仿真MATLAB 通信工具箱M.西安电子科技大学出版社 ,2002. 附录 %- 2DPSK 调制与解调%-%Initial_Partfunction y=dpsk2()fs = 30000;Time_Hold_On = 0.1;Num_Unit = fs * Time_Hold_On;High_Level = ones ( 1, Num_Unit );Low_Level = zeros ( 1, Num_Unit );w = 300;A = 1;Initial_The_SignalSign_Se

12、t = 0,1,1,0,1,0,0,1Lenth_Of_Sign = length ( Sign_Set );st = zeros ( 1, Num_Unit * Lenth_Of_Sign );sign_orign = zeros ( 1, Num_Unit * Lenth_Of_Sign );sign_result = zeros ( 1, Num_Unit * Lenth_Of_Sign );t = 0 : 1/fs : Time_Hold_On * Lenth_Of_Sign - 1/fs;Generate_The_Original_Signalfor I = 1 : Lenth_Of

13、_Sign if Sign_Set(I) = 1 sign_orign( (I-1)*Num_Unit + 1 : I*Num_Unit) = High_Level; else I*Num_Unit) = Low_Level; endendModulation_Partst( (I-1)*Num_Unit + 1 : I*Num_Unit) = A * cos ( 2 * pi * w * t( (I-1)*Num_Unit + 1 : I*Num_Unit ) + ( pi / 2 ) ); I*Num_Unit ) );figuresubplot ( 2, 1, 1 )plot(t, si

14、gn_orign);axis( 0 , Time_Hold_On *( Lenth_Of_Sign + 1), - (A / 2), A + (A / 2) );title ( 原始信号 );gridsubplot ( 2, 1, 2 );plot ( t, st );axis( 0 , Time_Hold_On *( Lenth_Of_Sign + 1), - 3*(A / 2), 3*(A / 2) );调制后的信号相乘dt = st .* cos ( 2 * pi * w * t );subplot(2,1,1)plot ( t, dt );相乘后的波形低通滤波部分N,Wn = buttord( 2*pi*50, 2*pi*150,3,25,s); %临界频率采用角频率表示b,a=butter(N,Wn,bz,az=impinvar(b,a,fs); %映射为数字的dt = filter(bz,az,dt);subplot(2,1,2)低通滤波后的波形抽样判决 & 逆码变换部分 if dt(2*I-1)*Num_Unit/2) 0.25 sign_result( (I-1)*Num_Unit + 1 :plot ( t, sign_result );逆码变换后的波形

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1