ImageVerifierCode 换一换
格式:DOCX , 页数:46 ,大小:561.10KB ,
资源ID:2155195      下载积分:12 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/2155195.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(最新同济第六版《高等数学》教案WORD版第12章微分方程.docx)为本站会员(b****3)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

最新同济第六版《高等数学》教案WORD版第12章微分方程.docx

1、最新同济第六版高等数学教案WORD版第12章微分方程第一十二章 微分方程教学目的:1了解微分方程及其解、阶、通解,初始条件和特等概念。2熟练掌握变量可分离的微分方程及一阶线性微分方程的解法。3会解齐次微分方程、伯努利方程和全微分方程,会用简单的变量代换解某些微分方程。4 会用降阶法解下列微分方程:, 和5 理解线性微分方程解的性质及解的结构定理。6掌握二阶常系数齐次线性微分方程的解法,并会解某些高于二阶的常系数齐次线性微分方程。7.求自由项为多项式、指数函数、余弦函数,以及它们的和与积的二阶常系数非齐次线性微分方程的特解和通解。8.会解欧拉方程,会解包含两个未知函数的一阶常系数线性微分方程组。

2、9会解微分方程组(或方程组)解决一些简单的应用问题。教学重点:1、 可分离的微分方程及一阶线性微分方程的解法2、 可降阶的高阶微分方程, 和3、 二阶常系数齐次线性微分方程;4、 自由项为多项式、指数函数、余弦函数,以及它们的和与积的二阶常系数非齐次线性微分方程;教学难点:1、 齐次微分方程、伯努利方程和全微分方程;2、 线性微分方程解的性质及解的结构定理; 3、自由项为多项式、指数函数、余弦函数,以及它们的和与积的二阶常系数非齐次线性微分方程的特解。4、欧拉方程12. 1 微分方程的基本概念 函数是客观事物的内部联系在数量方面的反映, 利用函数关系又可以对客观事物的规律性进行研究. 因此如何

3、寻找出所需要的函数关系, 在实践中具有重要意义. 在许多问题中, 往往不能直接找出所需要的函数关系, 但是根据问题所提供的情况, 有时可以列出含有要找的函数及其导数的关系式. 这样的关系就是所谓微分方程. 微分方程建立以后, 对它进行研究, 找出未知函数来, 这就是解微分方程. 例1 一曲线通过点(1, 2), 且在该曲线上任一点M(x, y)处的切线的斜率为2x, 求这曲线的方程. 解 设所求曲线的方程为y=y(x). 根据导数的几何意义, 可知未知函数y=y(x)应满足关系式(称为微分方程) . (1) 此外, 未知函数y=y(x)还应满足下列条件: x=1时, y=2, 简记为y|x=1

4、=2. (2)把(1)式两端积分, 得(称为微分方程的通解) , 即y=x2+C, (3) 其中C是任意常数. 把条件“x=1时, y=2”代入(3)式, 得 2=12+C, 由此定出C=1. 把C=1代入(3)式, 得所求曲线方程(称为微分方程满足条件y|x=1=2的解): y=x2+1. 例2 列车在平直线路上以20m/s(相当于72km/h)的速度行驶; 当制动时列车获得加速度-0.4m/s2. 问开始制动后多少时间列车才能停住, 以及列车在这段时间里行驶了多少路程? 解 设列车在开始制动后t秒时行驶了s米. 根据题意, 反映制动阶段列车运动规律的函数s=s(t)应满足关系式 . (4)

5、此外, 未知函数s=s(t)还应满足下列条件: t=0时, s=0, . 简记为s|t=0=0, s|t=0=20. (5) 把(4)式两端积分一次, 得 ; (6)再积分一次, 得 s=-0.2t2 +C1t +C2, (7)这里C1, C2都是任意常数. 把条件v|t=0=20代入(6)得 20=C1; 把条件s|t=0=0代入(7)得0=C2. 把C1, C2的值代入(6)及(7)式得 v=-0.4t +20, (8) s=-0.2t2+20t. (9)在(8)式中令v=0, 得到列车从开始制动到完全停住所需的时间 (s). 再把t=50代入(9), 得到列车在制动阶段行驶的路程 s=-

6、0.2502+2050=500(m). 解 设列车在开始制动后t秒时行驶了s米, s=-0.4, 并且s|t=0=0, s|t=0=20. 把等式s=-0.4两端积分一次, 得 s=-0.4t+C1, 即v=-0.4t+C1(C1是任意常数), 再积分一次, 得 s=-0.2t2 +C1t +C2 (C1, C2都C1是任意常数). 由v|t=0=20得20=C1, 于是v=-0.4t +20; 由s|t=0=0得0=C2, 于是s=-0.2t2+20t. 令v=0, 得t=50(s). 于是列车在制动阶段行驶的路程 s=-0.2502+2050=500(m). 几个概念: 微分方程: 表示未

7、知函数、未知函数的导数与自变量之间的关系的方程, 叫微分方程. 常微分方程: 未知函数是一元函数的微分方程, 叫常微分方程. 偏微分方程: 未知函数是多元函数的微分方程, 叫偏微分方程. 微分方程的阶: 微分方程中所出现的未知函数的最高阶导数的阶数, 叫微分方程的阶. x3 y+x2 y-4xy=3x2 , y(4) -4y+10y-12y+5y=sin2x, y(n) +1=0, 一般n阶微分方程: F(x, y, y, , y(n) )=0. y(n)=f(x, y, y, , y(n-1) ) . 微分方程的解: 满足微分方程的函数(把函数代入微分方程能使该方程成为恒等式)叫做该微分方程

8、的解. 确切地说, 设函数y=(x)在区间I上有n阶连续导数, 如果在区间I上, Fx, (x), (x), , (n) (x)=0, 那么函数y=(x)就叫做微分方程F(x, y, y, , y(n) )=0在区间I上的解. 通解: 如果微分方程的解中含有任意常数, 且任意常数的个数与微分方程的阶数相同, 这样的解叫做微分方程的通解. 初始条件: 用于确定通解中任意常数的条件, 称为初始条件. 如 x=x0 时, y=y0 , y= y0 . 一般写成 , . 特解: 确定了通解中的任意常数以后, 就得到微分方程的特解. 即不含任意常数的解. 初值问题: 求微分方程满足初始条件的解的问题称为

9、初值问题. 如求微分方程y=f(x, y)满足初始条件的解的问题, 记为 . 积分曲线: 微分方程的解的图形是一条曲线, 叫做微分方程的积分曲线. 例3 验证: 函数 x=C1cos kt+C2 sin kt是微分方程 的解. 解 求所给函数的导数: , . 将及x的表达式代入所给方程, 得 -k2(C1cos kt+C2sin kt)+ k2(C1cos kt+C2sin kt)0. 这表明函数x=C1coskt+C2sinkt 满足方程, 因此所给函数是所给方程的解. 例4 已知函数x=C1coskt+C2sinkt(k0)是微分方程的通解, 求满足初始条件 x| t=0 =A, x| t

10、=0 =0的特解. 解 由条件x| t=0 =A及x=C1 cos kt+C2 sin kt, 得 C1=A. 再由条件x| t=0 =0, 及x(t) =-kC1sin kt+kC2cos kt, 得 C2=0. 把C1、C2的值代入x=C1cos kt+C2sin kt中, 得 x=Acos kt. 12. 2 可分离变量的微分方程 观察与分析: 1. 求微分方程y=2x的通解. 为此把方程两边积分, 得y=x2+C. 一般地, 方程y=f(x)的通解为(此处积分后不再加任意常数). 2. 求微分方程y=2xy2 的通解. 因为y是未知的, 所以积分无法进行, 方程两边直接积分不能求出通解

11、. 为求通解可将方程变为, 两边积分, 得 , 或, 可以验证函数是原方程的通解. 一般地, 如果一阶微分方程y=(x, y)能写成 g(y)dy=f(x)dx形式, 则两边积分可得一个不含未知函数的导数的方程 G(y)=F(x)+C, 由方程G(y)=F(x)+C所确定的隐函数就是原方程的通解 对称形式的一阶微分方程: 一阶微分方程有时也写成如下对称形式: P(x, y)dx+Q(x, y)dy=0在这种方程中, 变量x与y 是对称的. 若把x看作自变量、y看作未知函数, 则当Q(x,y)0时, 有 . 若把y看作自变量、x看作未知函数, 则当P(x,y)0时, 有 . 可分离变量的微分方程

12、: 如果一个一阶微分方程能写成 g(y)dy=f(x)dx (或写成y=(x)(y)的形式, 就是说, 能把微分方程写成一端只含y的函数和dy, 另一端只含x的函数和dx, 那么原方程就称为可分离变量的微分方程. 讨论: 下列方程中哪些是可分离变量的微分方程?(1) y=2xy, 是. y-1dy=2xdx .(2)3x2+5x-y=0, 是. dy=(3x2+5x)dx.(3)(x2+y2)dx-xydy=0, 不是.(4)y=1+x+y2+xy2, 是. y=(1+x)(1+y2).(5)y=10x+y, 是. 10-ydy=10xdx.(6). 不是. 可分离变量的微分方程的解法: 第一

13、步 分离变量, 将方程写成g(y)dy =f(x)dx的形式; 第二步 两端积分:, 设积分后得G(y)=F(x)+C; 第三步 求出由G(y)=F(x)+C所确定的隐函数y=(x)或x=(y)G(y)=F(x)+C , y= (x)或x=(y)都是方程的通解, 其中G(y)=F(x)+C称为隐式(通)解. 例1 求微分方程的通解. 解 此方程为可分离变量方程, 分离变量后得 , 两边积分得 , 即 ln|y|=x2+C1, 从而 . 因为仍是任意常数, 把它记作C, 便得所给方程的通解 . 解 此方程为可分离变量方程, 分离变量后得 , 两边积分得 , 即 ln|y|=x2+lnC,从而 .

14、 例2 铀的衰变速度与当时未衰变的原子的含量M成正比. 已知t=0时铀的含量为M0, 求在衰变过程中铀含量M(t)随时间t变化的规律. 解 铀的衰变速度就是M(t)对时间t的导数. 由于铀的衰变速度与其含量成正比, 故得微分方程 , 其中(0)是常数, 前的曲面号表示当t增加时M单调减少. 即. 由题意, 初始条件为 M|t=0=M0. 将方程分离变量得 . 两边积分, 得, 即 lnM=-t+lnC, 也即M=Ce-t. 由初始条件, 得M0=Ce0=C, 所以铀含量M(t)随时间t变化的规律M=M0e-t . 例3 设降落伞从跳伞塔下落后, 所受空气阻力与速度成正比, 并设降落伞离开跳伞塔时速度为零. 求降落伞下落速度与时间的函数关系. 解 设降落伞下落速度为v(t). 降落伞所受外力为F=mg-kv( k为比例系数). 根据牛顿第二运动定律F=ma, 得函数v(t)应满足的方程为 , 初始条件为 v|t=0=0. 方程分离变量, 得 , 两边积分, 得, , 即 (), 将初始条件v|t=0=0代入通解得, 于是降落伞下落速度与时间的函数关系为. 例4 求微分方程的通解. 解 方程可化为 , 分离变量得 , 两边积分得 , 即. 于是原

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1