1、3、 课程设计重点及内容本次课程设计重点是培养我们正确应用公式、综合分析和解决问题的能力,以及计算机编程能力。另外它要求我们完成12个综合性的结合生产实践的题目。如目前生产实践中经常用到的水准网严密平差及精度评定,边角网(导线)严密平差及精度评定等。此次我所选的课程设计课题是水准网严密平差及精度评定,其具体内容如下:根据题目要求,正确应用平差模型列出观测值条件方程、误差方程和法方程;解算法方程,得出平差后的平差值及各待定点的高程平差值;评定各平差值的精度和各高程平差值的精度。具体算例为:如图所示水准网,有2个已知点,3个未知点,7个测段。各已知数据及观测值见下表(1) 已知点高程H1=5.01
2、6m , H2=6.016m (2)高差观测值(m)端点号高差观测值m测段距离km序号1-31.3591.111-42.0091.722-30.3632.332-41.0122.743-40.6572.453-50.2381.465-2-0.5952.67(3)求各待定点的高程;3-4点的高差中误差;3号点、4号点的高程中误差。第三部分 设计思路一、解题步骤(1)此次设计我所采用的模型为间接平差模型,根据已知条件我们可知观测总数n=7,必要观测数t=3(则多余观测数r=n-t=4),因此我需先选定三个参数,即3、4、5点的最或然高程X3、X4、X5(X=X0+x,X30=6.375、X40=7
3、.025、X50=6.611;其中X0为参数的近似值,x为其改正值)为参数。(2)列出条件方程,即将每一个观测量的平差值分别表达成所选参数的函数,H1+h1=X3、H1+h2=X4、H2+h3=X3、H2+h4=X4、X3+h5=X4、X3+h6=X5、X5+h7=H2;整理后得出误差方程,v1=x3、v2=x4、v3=x3-4、v4=x4-3、v5=-x3+x4-7、v6=-x3+x5-2、v7=-x5,即v=Bx-l的形式。(3)定权,令每千米的观测高差为单位权观测,即Pi=1/Si,从而可写出权阵P;根据误差方程式又可得其系数矩阵B和自由项l,并由它们组成法方程NBBx-W=0(其中NB
4、B=BTPB,W=BTPl),法方程的个数等于所选参数的个数。(4)解算法方程,求出参数改正值x并计算参数的平差值X=X0+x。(5)由误差方程计算V,并求出观测量的平差值。为了检查平差计算的正确性,将所求的值代入条件方程,看其是否满足方程。(6)精度评定,计算单位权中误差,按照题设要求列出权函数式,再根据平差参数的协方差阵求出协因数,最后求出某段高差中误差,某些点的高程中误差。二、程序设计思想考虑到在解题过程中一些计算的复杂性,我们需借助一些技术将计算简单化,快捷化,因此在课程设计过程中,我们把一些C语言程序设计引入其中;通过一些简单、明了的程序及子函数调用,我们就可以很方便快捷的求出用笔算
5、比较繁琐、费时的矩阵乘积、矩阵的逆(如BTPB、BTPl)等运算。第四部分 程序流程图根据题目列出条件方程并写成误差方程的形式V=Bx-l确定权阵,根据误差方程得到矩阵B、l进而写出BT运用C程序语言求出BTP,进一步得到NBB=BTPB、W=BTPl并求出NBB-1用C程序求出参数的改正数x=NBB-1W根据C程序语言求Bx,进而由V=Bx-l写出各观测值的改正数根据L=L+V求出各观测值的平差值检验所求各值是否正确,若无误则往下进行,反之检查各步骤查出错误并改正由程序计算VTP进而求出VTPV,求单位权中误差,再根据权函数式、协因数传播定律评定各观测值及所求高程的精度第五部分 程序及说明一
6、、矩阵相乘计算函数#include “stdio.h”void Matrix(a,b,m,n,k,c)int m,n,k;double a,b,c;int i,j,l,u;for(i=0;i=m-1;i+)for(j=0;j=k-1;j+) u=i*k+j;cu=0.0; for(l=0;l=n-1;l+) cu=cu+ai*n+l*bl*k+j; return;1.计算BTPmain()int i,j;static double a37=BT;static double c37,b77=P;Matrixmul(a,b,3,7,7,c);printf(“n”);=2;=6; printf(“%
7、8.4ft”,cij; printf(“n”);return0;2.计算BTPB,即NBBstatic double a37=BTP;static double c33,b73=B;Matrixmul(a,b,3,7,3,c);3.计算BTPl,即Wstatic double c31,b71=l;Matrixmul(a,b,3,7,1,c);=0;二、矩阵的逆计算函数(求NBB-1)#include stdio.h#define M 3 void main() float MATM2*M;float MAT1MM;float t;int i,j,k,l;/*/ /*对矩阵进行初始化*/ M;i
8、+) for(j=0;2*M;j+) MAT1j=0;/*对MAT1矩阵赋初值 */ for (j=0; scanf(%f,&MAT1j);/*打印目标矩阵?*/ printf(原矩阵为:n);for (i=0; %13.7f,MAT1j); printf( /*/ /*对MAT1矩阵进行扩展,MAT1矩阵添加单位阵,由M*M变成2M*2M矩阵 */ if (jM) MATj=MAT1j; else if (j=M+i) MATj=1; else MATj=0;/*对M矩阵进行变换,使得前半部分矩阵成为单位阵,则 */ /*后半部分矩阵即为所求矩阵逆阵 */ /*对第i行进行归一化 */ fo
9、r(k=i+1;kk+) MATj=MATj+MATkj; t=MAT; for(j=i;MATj=MATj/t;/*对矩阵进行行变换,使得第i 列只有一个元素不为零,且为1*/ for(k=0;if(k!=i) t=MATk; for (l=i;l+) MATkl=MATkl-MATl*t; /*将后半部分矩阵即所求矩阵逆阵存入MAT2矩阵。 MAT1j=MATj+M;/*/ /*输出所求的逆阵*/ 逆阵为: for(i=0;%8.4f4.求NBB-1W,即改正数xstatic double a33=NBB-1;static double c31,b31=W;Matrixmul(a,b,3,
10、3,1,c);5.计算Bxstatic double a73=B;static double c71,b31=x;Matrixmul(a,b,7,3,1,c);6.计算VTPstatic double a17=VT;static double c17,b77=P;Matrixmul(a,b,1,7,7,c);7.计算VTPVstatic double a17=VTP;static double c11,b71=V;Matrixmul(a,b,1,7,1,c);注:程序中有下划线部分在C语言环境中运行时,需根据已知条件及所求结果进行替换!第六部分 计算结果根据条件方程及定权原则写出B、l、P及B
11、TB=1.0,0.0,0.0, 0.0,1.0,0.0, 1.0,0.0,0.0, -1.0,1.0,0.0, -1.0,0.0,1.0, 0.0,0.0,-1.0l=0.0, 0.0, 4.0, 3.0, 7.0, 2.0, 0.0P=0.9091,0.0,0.0,0.0,0.0,0.0,0.0, 0.0,0.5882,0.0,0.0,0.0,0.0,0.0, 0.0,0.0,0.4348,0.0,0.0,0.0,0.0, 0.0,0.0,0.0,0.3704,0.0,0.0,0.0, 0.0,0.0,0.0,0.0,0.4167,0.0,0.0, 0.0,0.0,0.0,0.0,0.0,0
12、.7143,0.0, 0.0,0.0,0.0,0.0,0.0,0.0,0.3846BT=1.0,0.0,1.0,0.0,-1.0,-1.0,0.0,0.0,1.0,0.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,-1.0一、在矩阵相乘计算函数的程序前提下,进行以下子程序的调用1.替换第1个程序中的BT 、P并运行程序得到BTP BTP=0.9091,0.0,0.4348,0.0,-0.4167,-0.7143,0.0,0.0,0.5882,0.0,0.374,0.4167,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.7143,-0.384
13、62.替换第2个程序中的BTP、B并运行程序得到BTPB,即NBBNBB=2.4748,-0.4167,-0.7143,-0.4167,1.3753,0.0,-0.7143,0.0,1.09893.替换第3个程序中的BTP、l并运行程序得到BTPl,即WW=-2.6063,4.0281,1.4286二、在矩阵的逆计算函数程序中进行以下操作 运行程序,按照提示及以上运算得到的矩阵NBB输入其元素,运行的结果即为NBB-1 NBB-1=0.5307,0.1608,0.3450,0.1608,0.7758,0.1045,0.3450,0.1045,1.1342三、再次在矩阵相乘计算函数的程序前提下,
14、进行以下子程序的调用1.替换第4个程序中的NBB-1、W并运行程序得到NBB-1W,即所选参数的改正数xx=-0.2426,2.8552,1.14212.替换第5个程序中的B、x并运行程序得到BxBx=-0.2426, 2.8552, -0.2464, 3.0978, 1.3847, -1.14213.根据V=Bx-l求出各观测值的改正数V,并写出VT,然后替换第6个程序中的VT、P并运行程序得到VTPV=-0.2426, -4.2426, -0.1448, -3.9022, -0.6153,VT=-0.2426,2.8552,-4.2426,-0.1448,-3.9022,-0.6153,-
15、1.1421VTP=-0.2205,1.6794,-1.8447,-0.0536,1.6260,-0.4395,-0.43934.替换第7个程序中的VTP、V并运行程序得到VTPVVTPV=19.7997四、求出各个观测值平差值并按要求平定精度X3=6.3748 m X4=7.0279 m X5=6.6122 mh1=1.3588m h2=2.0119m h3=0.3588m h4=1.0119m h5=0.6531m h6=0.2374m h7=-0.5961m根据公式可求得单位权中误差为 2.225mmh34= X3- X4 Q34=1 -1 0 NBB-11 -1 0T=0.9849H3
16、=X3 Q34=1 0 0 NBB-11 0 0T=0.5307H4= X4 Q34=0 1 0 NBB-10 1 0T=0.77583、4点高差中误差为 2.208mm3号点高程中误差为 1.621mm4号点高程中误差为 1.96mm第七部分 总结通过这次误差理论与测量平差的课程设计,我又对整本书有了一个更深的理解。其实课程设计就是将我们所学的理论知识应用于实践的过程,在这一过程中,进一步掌握测量平差的基本原理和基本公式,并熟悉测量数据处理的基本技能和计算方法。或许我们已对误差理论与测量平差这本书的理论知识有了一定了解,但将它应用于实践依然是我们的一个难点,尤其是将这门课程与计算机程序完美地结合。这便要求我们在原有的解题思路中加入C语言程序,并让它来帮助我们解决矩阵的复杂运算。既然用到了程序,我们就必须保证其运算的简洁性、正确性,尤其是在编写过程中要认真检查,为程序顺利运行打下基础。另外在各个子程序调用过程中,我们要充分考虑其顺序性并反复调试,以便得到理想结果。尽管在这次课程设计中遇到了很多困难,但我却得到了不少收获,并培养了自己正确应用公式、综合分析和解决问题的能力,同时也为今后步入社会打下了一定的基础。另外,我们还要学会综合利用自身所学的知识,并将它们联系起来帮助自己有效地解决实际中的问题。总之,在这次课程设计中我不但过了比较充实的一周,还收获了不少知识。
copyright@ 2008-2022 冰豆网网站版权所有
经营许可证编号:鄂ICP备2022015515号-1