1、潍坊市)已知m、n是两条不同的直线,、是三个不同的平面,则下列命题正确的是()A若,则B若mn,m,n,则C若mn,m,则nD若n,n,则对于选项A,垂直于同一平面的两个平面也可以相交,如正方体相邻的两个平面,故A错;对于选项B,设平面与平面相交于直线l,则在这两个平面内都存在与交线平行的直线,此时这两直线也平行,故B也错;对于选项C,应有n或n两种情形,故C错;对于选项D,由线面垂直性质知,垂直于同一直线的两平面平行,故D正确3(2011日照市)若l、m、n为直线,、为平面,则下列命题中为真命题的是()A若m,m,则B若m,n,则mnC若,则D若,l,则l由垂直于同一平面的两直线互相平行可知
2、,选项B正确;而对于选项A,平行于同一直线的两平面也可能相交,故选项A不正确;对于选项C,垂直于同一平面的两平面也可能平行,故选项C不正确;对于选项D,位于互相垂直的两平面中的一个平面内的一直线,其与另一个平面可以平行、斜交或垂直,故选项D不正确B4(2011烟台市)已知m,n是两条不同的直线,为两个不同的平面,有下列四个命题:若m,n,mn,则;若m,n,mn,则;若m,n,mn,则;若m,n,则mn.其中正确命题的个数为()A1 B2C3 D4对于命题,由分别垂直于互相垂直的直线的两平面垂直知,正确;对于命题,分别平行于互相垂直的直线的两平面的位置关系可能相交,故错误;对于命题,两平面也可
3、能相交,故错误;对于命題,由于m,m,则直线m垂直于平面内的任意一条直线,又n,则n平行于内的无数条直线,所以直线mn,故正确所以正确的命题有两个5(山东)正方体ABCDA1B1C1D1中,E、F分别是AA1、AB的中点,则EF与对角面BDD1B1所成角的度数是()A30 B45C60 D150如下图,EFA1B,EF、A1B与对面角BDD1B1所成的角相等,设正方体的棱长为1,则A1B.连接A1C1,交D1B1于点M,连接BM,则有A1M面BDD1B1,A1BM为A1B与面BDD1B1所成的角RtA1BM中,A1B,A1M,故A1BM30.EF与对角面BDD1B1所成角的度数是30.故选A.
4、A6(山东)已知直线m、n及平面,其中mn,那么在平面内到两条直线m、n距离相等的点的集合可能是:一条直线;一个平面;一个点;空集其中正确的是()A BC D如图1,当直线m或直线n在平面内时有可能没有符合题意的点;如图2,直线m、n到已知平面的距离相等且所在平面与已知平面垂直,则已知平面为符合题意的点;如图3,直线m、n所在平面与已知平面平行,则符合题意的点为一条直线,从而选C. C二、填空题:本大题共4小题,每小题5分,共20分,把答案填在题中横线上7(2011福建)如图,正方体ABCDA1B1C1D1中,AB2,点E为AD的中点,点F在CD上,若EF平面AB1C,则线段EF的长度等于_
5、EF面AB1C,EFAC.又E是AD的中点,F是DC的中点EFAC. 8(2011琼海市高三一模)下面给出四个命题:若平面平面,AB,CD是夹在,间的线段,若ABCD,则ABCD;a,b是异面直线,b,c是异面直线,则a,c一定是异面直线过空间任一点,可以做两条直线和已知平面垂直;平面平面,P,PQ,则PQ;其中正确的命题是_(只填命题号) ABCD可确定一个平面,如图又,BDAC,四边形ABCD为平行四边形,ABCD,正确不正确,a与c可能异面,也可能共面过一点作已知平面的垂线有且只有一条,故不正确正确9.(2011九江市六校高三联考)如图,已知三棱锥SABC中,底面ABC为边长等于2的等边
6、三角形,SA底面ABC,SA3,那么直线SB与平面SAC所成角的正弦值为_ 如图在ABC中,BDAC,SA面ABC,SABD,又SAACA,BD平面SAC,SD为SB在平面SAC内的射影,BSD为直线SB与平面SAC所成的角,在RtSBA中,SB,在RtABD中,BD在RtSBD中,sinBSD直线SB与平面SAC所成角的正弦值为10(2011枣庄市高三模拟)已知,是三个不同的平面,命题“,且”是真命题,如果把,中的任意两个换成直线,另一个保持不变,在所得的所有新命题中,真命题有_个 若,换为直线a,b,则命题化为“ab,且b”,此命题为真命题;若,换为直线a,b,则命题化为“a,且abb”,
7、此命题为假命题;若,换为直线a,b,则命题化为“a,且bab”,此命题为真命题2三、解答题:本大题共2小题,共25分解答应写出文字说明、证明过程或演算步骤 11(12分)(2011北京)如图,在四面体PABC中,PCAB,PABC,点D,E,F,G分别是棱AP,AC,BC,PB的中点(1)求证:DE平面BCP;(2)求证:四边形DEFG为矩形;(3)是否存在点Q,到四面体PABC六条棱的中点的距离相等?说明理由解:(1)证明:因为D,E分别为AP、AC的中点,所以DEPC.又因为DE平面BCP,所以DE平面BCP.(2)证明:因为D,E,F,G分别为AP,AC,BC,PB的中点,所以DEPCF
8、G,DGABEF,来源:学+科+网Z+X+X+K所以四边形DEFG为平行四边形又因为PCAB,所以DEDG.所以四边形DEFG为矩形(3)存在点Q满足条件,理由如下:连接DF,EG,设Q为EG的中点由(2)知,DFEGQ,且QDQEQFQGEG,分别取PC,AB的中点M,N,连接ME,EN,NG,MG,MN.与(2)同理,可证四边形MENG为矩形,其对角线交点为EG的中点Q,且QMQNEG.所以Q为满足条件的点12(13分)(2011天津)如图,在四棱锥PABCD中,底面ABCD为平行四边形ADC45,ADAC1,O为AC的中点,PO平面ABCD,PO2,M为PD的中点PB平面ACM;AD平面
9、PAC;(3)求直线AM与平面ABCD所成角的正切值连接BD,MO,在平行四边形ABCD中,因为O为AC的中点,所以O为BD的中点又M为PD的中点,所以PBMO.因为PB平面ACM,MO平面ACM,所以PB平面ACM.因为ADC45,且ADAC1,所以DAC90,即ADAC,又PO平面ABCD,AD平面ABCD,所以POAD.而ACPOO,所以AD平面PAC.(3)取DO中点N,连接MN,AN.因为M为PD的中点,所以MNPO,且MNPO1.由PO平面ABCD,得MN平面ABCD,所以MAN是直线AM与平面ABCD所成的角,在RtDAO中,AD1,AO,所以DO,从而ANDO.在RtANM中,tanMAN,即直线AM与平面ABCD所成角的正切值为
copyright@ 2008-2022 冰豆网网站版权所有
经营许可证编号:鄂ICP备2022015515号-1