ImageVerifierCode 换一换
格式:DOCX , 页数:38 ,大小:279.27KB ,
资源ID:18431928      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/18431928.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(matalab优化问题详解综述Word格式文档下载.docx)为本站会员(b****3)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

matalab优化问题详解综述Word格式文档下载.docx

1、 -4; -6;A = 1 -1 1;3 2 4;3 2 0;b = 20; 42; 30;lb = zeros(3,1);x,fval,exitflag,output,lambda = linprog(f,A,b,lb)结果为:x = %最优解 0.0000 15.0000 3.0000fval = %最优值 -78.0000exitflag = %收敛 1output = iterations: 6 %迭代次数 cgiterations: 0 algorithm: lipsol %所使用规则lambda = ineqlin: 3x1 double eqlin: 0x1 double upp

2、er: lower: lambda.ineqlinans = 1.5000 0.5000 lambda.lower 1.0000表明:不等约束条件2和3以及第1个下界是有效的5.2 foptions函数对于优化控制,MATLAB提供了18个参数,这些参数的具体意义为:options(1)-参数显示控制(默认值为0)。等于1时显示一些结果。 options(2)-优化点x的精度控制(默认值为1e-4)。 options(3)-优化函数F的精度控制(默认值为1e-4)。 options(4)-违反约束的结束标准(默认值为1e-6)。 options(5)-算法选择,不常用。 options(6)-

3、优化程序方法选择,为0则为BFCG算法,为1则采用DFP算法。 options(7)-线性插值算法选择,为0则为混合插值算法,为1则采用立方插算法。 options(8)-函数值显示 (目标达到问题中的Lambda ) options(9)-若需要检测用户提供的梯度,则设为1。 options(10)-函数和约束估值的数目。 options(11)-函数梯度估值的个数。 options(12)-约束估值的数目。 options(13)-等约束条件的个数。 options(14)-函数估值的最大次数(默认值是100变量个数) options(15)-用于目标 达到问题中的特殊目标。 option

4、s(16)-优化过程中变量的最小有限差分梯度值。 options(17)- 优化过程中变量的最大有限差分梯度值。 options(18)-步长设置 (默认为1或更小)。Foptions已经被optimset和optimget代替,详情请查函数optimset和optimget。5.3 非线性规划问题5.3.1 有约束的一元函数的最小值单变量函数求最小值的标准形式为 sub.to 在MATLAB5.x中使用fmin函数求其最小值。函数 fminbnd格式 x = fminbnd(fun,x1,x2) %返回自变量x在区间上函数fun取最小值时x值,fun为目标函数的表达式字符串或MATLAB自定

5、义函数的函数柄。x = fminbnd(fun,x1,x2,options) % options为指定优化参数选项x,fval = fminbnd() % fval为目标函数的最小值x,fval,exitflag = fminbnd() %xitflag为终止迭代的条件x,fval,exitflag,output = fminbnd() % output为优化信息说明 若参数exitflag0,表示函数收敛于x,若exitflag=0,表示超过函数估计值或迭代的最大数字,exitflag X=fminsearch(myfun, 0,0)命令 利用函数fminunc求多变量无约束函数最小值函数

6、fminunc格式 x = fminunc(fun,x0) %返回给定初始点x0的最小函数值点x = fminunc(fun,x0,options) % options为指定优化参数x,fval = fminunc() %fval最优点x处的函数值x,fval,exitflag = fminunc() % exitflag为终止迭代的条件,与上同。x,fval,exitflag,output = fminunc() %output为输出优化信息x,fval,exitflag,output,grad = fminunc() % grad为函数在解x处的梯度值x,fval,exitflag,out

7、put,grad,hessian = fminunc() %目标函数在解x处的海赛(Hessian)值当函数的阶数大于2时,使用fminunc比fminsearch更有效,但当所选函数高度不连续时,使用fminsearch效果较好。例5-5 求的最小值。 fun=3*x(1)2+2*x(1)*x(2)+x(2)2; x0=1 1; x,fval,exitflag,output,grad,hessian=fminunc(fun,x0) 1.0e-008 * -0.7591 0.2665 1.3953e-016 16 stepsize: 1.2353 firstorderopt: 1.6772e-

8、007medium-scale: Quasi-Newton line searchgrad = 1.0e-006 * -0.1677 0.0114hessian = 6.0000 2.0000 2.0000 2.0000或用下面方法: fun=inline()fun = Inline function: fun(x) = 3*x(1)2+2*x(1)*x(2)+x(2)2 x0=1 1; x=fminunc(fun,x0)5.3.3 有约束的多元函数最小值非线性有约束的多元函数的标准形式为:x、b、beq、lb、ub是向量,A、Aeq为矩阵,C(x)、Ceq(x)是返回向量的函数,f(x)为目

9、标函数,f(x)、C(x)、Ceq(x)可以是非线性函数。在MATLAB5.x中,它的求解由函数constr实现。函数 fmincon格式 x = fmincon(fun,x0,A,b)x = fmincon(fun,x0,A,b,Aeq,beq)x = fmincon(fun,x0,A,b,Aeq,beq,lb,ub)x = fmincon(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon)x = fmincon(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon,options)x,fval = fmincon()x,fval,exitflag = fminc

10、on()x,fval,exitflag,output = fmincon()x,fval,exitflag,output,lambda = fmincon()x,fval,exitflag,output,lambda,grad = fmincon()x,fval,exitflag,output,lambda,grad,hessian = fmincon()参数说明:fun为目标函数,它可用前面的方法定义;x0为初始值;A、b满足线性不等式约束,若没有不等式约束,则取A= ,b= ;Aeq、beq满足等式约束,若没有,则取Aeq= ,beq= ;lb、ub满足,若没有界,可设lb= ,ub= ;

11、nonlcon的作用是通过接受的向量x来计算非线性不等约束和等式约束分别在x处的估计C和Ceq,通过指定函数柄来使用,如:x = fmincon(myfun,x0,A,b,Aeq,beq,lb,ub,mycon),先建立非线性约束函数,并保存为mycon.m:function C,Ceq = mycon(x)C = % 计算x处的非线性不等约束的函数值。Ceq = % 计算x处的非线性等式约束lambda是Lagrange乘子,它体现哪一个约束有效。output输出优化信息;grad表示目标函数在x处的梯度;hessian表示目标函数在x处的Hessiab值。例5-6 求下面问题在初始点(0,

12、1)处的最优解约束条件的标准形式为先在MATLAB编辑器中建立非线性约束函数文件:function c, ceq=mycon (x)c=(x(1)-1)2-x(2);ceq= ; %无等式约束然后,在命令窗口键入如下命令或建立M文件:fun=x(1)2+x(2)2-x(1)*x(2)-2*x(1)-5*x(2) %目标函数x0=0 1;A=-2 3; %线性不等式约束b=6;Aeq= ; %无线性等式约束beq= ;lb= ; %x没有下、上界ub= ;x,fval,exitflag,output,lambda,grad,hessian=fmincon(fun,x0,A,b,Aeq,beq,l

13、b,ub,mycon)则结果为 3 4 -13exitflag = %解收敛 2 SQP, Quasi-Newton, line-search 2x1 double %x下界有效情况,通过lambda.lower可查看。 2x1 double %x上界有效情况,为0表示约束无效。 0x1 double %线性等式约束有效情况,不为0表示约束有效。 eqnonlin: 0x1 double %非线性等式约束有效情况。 2.5081e-008 %线性不等式约束有效情况。 ineqnonlin: 6.1938e-008 %非线性不等式约束有效情况。grad = %目标函数在最小值点的梯度 -0.17

14、76hessian = %目标函数在最小值点的Hessian值 1.0000 -0.0000 -0.0000 1.0000例5-7 求下面问题在初始点x=(10, 10, 10)处的最优解。Min Sub.to fun= -x(1)*x(2)*x(3) x0=10,10,10; A=-1 -2 -2;1 2 2; b=0;72; x,fval=fmincon(fun,x0,A,b) 24.0000 12.0000 12.0000 -34565.3.4 二次规划问题二次规划问题(quadratic programming)的标准形式为:其中,H、A、Aeq为矩阵,f、b、beq、lb、ub、x为

15、向量其它形式的二次规划问题都可转化为标准形式。MATLAB5.x版中的qp函数已被6.0版中的函数quadprog取代。函数 quadprog格式 x = quadprog(H,f,A,b) %其中H,f,A,b为标准形中的参数,x为目标函数的最小值。x = quadprog(H,f,A,b,Aeq,beq) %Aeq,beq满足等约束条件。x = quadprog(H,f,A,b,Aeq,beq,lb,ub) % lb,ub分别为解x的下界与上界。x = quadprog(H,f,A,b,Aeq,beq,lb,ub,x0) %x0为设置的初值x = quadprog(H,f,A,b,Aeq,

16、beq,lb,ub,x0,options) % options为指定的优化参数x,fval = quadprog() %fval为目标函数最优值x,fval,exitflag = quadprog() % exitflag与线性规划中参数意义相同x,fval,exitflag,output = quadprog() % output与线性规划中参数意义相同x,fval,exitflag,output,lambda = quadprog() % lambda与线性规划中参数意义相同例5-8 求解下面二次规划问题则,在MATLAB中实现如下:H = 1 -1; -1 2 ;f = -2;A = 1

17、 1; -1 2; 2 1;b = 2; 2; 3;lb = zeros(2,1);x,fval,exitflag,output,lambda = quadprog(H,f,A,b, , ,lb) 0.6667 1.3333 -8.2222 active-set 2x1 double 3.1111 0.4444说明 第1、2个约束条件有效,其余无效。例5-9 求二次规划的最优解max f (x1, x2)=x1x2+3sub.to x1+x2-2=0化成标准形式:sub.to x1+x2=2在Matlab中实现如下:H=0,-1;-1,0;f=0;0;Aeq=1 1;b=2;x,fval,ex

18、itflag,output,lambda = quadprog(H,f, , ,Aeq,b) -1.0000 1x58 char5.4 “半无限”有约束的多元函数最优解“半无限”有约束多元函数最优解问题的标准形式为x、b、beq、lb、ub都是向量;A、Aeq是矩阵;C(x)、Ceq(x)、是返回向量的函数,f(x)为目标函数;f(x)、C(x)、Ceq(x)是非线性函数;为半无限约束,通常是长度为2的向量。在MTALAB5.x中,使用函数seminf解决这类问题。函数 fseminf格式 x = fseminf(fun,x0,ntheta,seminfcon)x = fseminf(fun,

19、x0,ntheta,seminfcon,A,b)x = fseminf(fun,x0,ntheta,seminfcon,A,b,Aeq,beq)x = fseminf(fun,x0,ntheta,seminfcon,A,b,Aeq,beq,lb,ub)x = fseminf(fun,x0,ntheta,seminfcon,A,b,Aeq,beq,lb,ub,options)x,fval = fseminf()x,fval,exitflag = fseminf()x,fval,exitflag,output = fseminf()x,fval,exitflag,output,lambda = fseminf()x0为初始估计值;fun为目标函数,其定义方式与前面相同;A、b由线性不等式约束确定,没有,则A=

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1