1、仪0必 1, I.x1,x2 1JH, l-xn4,xn ,各个小区间的长度依次为 二咅=%-乂0,二屜=灭2-為,XnXn-xn/。在每个小区间IXx 上任取一点 ,作函数f (匕)与小区间长度也x的乘积f( 件(i =1,2,|i|,n ),并作出和记P = max&2,川,也xn,如果不论对a,b怎样分法,也不论在小区间txxj上点怎样取法,只要当 P t 0时,和S总趋于确定的极限I,这时我们称这个极限I为 函数f x在区间l.a,b 1上的定积分(简称积分),记作:f x dx,即a f xdx=l = IPm f i其中f x叫做被积函数,f x dx叫做被积表达式,x叫做积分变量
2、,a叫做积分下限,b叫做积分上限,| a, b 叫做积分区间。Let f x be a function that is defined on the closed interval la, b .Consider a partitionp of the in terval b,binto n sub in terval (not n ecessarily of equal len gth ) by means ofpoints =x0 :xnxn = bf x corresponding to the partitionIf f(勺岁x exists,Integral) of f x fro
3、m a to b ,is given byf xdx=ipmon nd 0 such that 瓦 f ( yiXj -L for all Riemann sums 瓦 f ( yiXj for f (x)i =1 i =1on a, b for which the norm P of the associated partition is less than d .bIn the symbol i f x dx, a is called the lower limit of integral , b the upper limit of integral,and la,b J the int
4、egralinterval.定理 1 可积性定理 (Integrability Theorem )设f x在区间la,b I上连续,则f x在la,b 上可积。Theorem 1 If a function f x is continuous on the closed interval I a, b 1 ,it is integrable on I a, b I.定理 2 可积性定理(Integrability Theorem )设f x在区间la,b 上有界,且只有有限个间断点,则 f x在区间la,b 上可积。it is con ti nu ous there exceptTheorem
5、 2 If f x is bounded on la, b 丨 and if at a finite number of points ,then f x is integrable on a,b .L3.定积分的性质(Properties of Definite Integrals ) 两个特殊的定积分a(1)如果f x在x=a点有意义,则.f x dx = 0;(2)如果 f x 在 l.a,b 1 上可积,则 f x dx 二- f x dx。 b aTwo Special Definite Integrals(1) If f x is defined atx=a.Then . f x
6、dx = 0.(2) If f x is integrable on !a,bL Then f x dx = f x dx.b 定积分的线性性(Linearity of the Definite Integral )设函数f x和g x在la,b 1上都可积,k是常数,则kf x和f x + g x都可积,并且b b(1) kf x dx= k f x dx;a ab b b| f x 亠g x dx= f x dx+ g x dx; and consequently,g x are integrable on a,b l and k is a constant . Then(1)a kf x
7、 dx= k a f x dx;| f xg x dx= f x dx+ g xdx; and con seque ntly,a f X -g X dx= a f Xdx- ag xdx.性质3 定积分对于积分区间的可加性( Interval Additive Property of DefiniteIn tegrals)设f x在区间上可积,且 a , b和c都是区间内的点,则不论 a , b和c的相对位置c b c如何,都有.f xdx=. f x dx+. f x dx。a a b vProperty 3 If f x is integrable on the three closed
8、intervals determined by a,b, and c ,thena f X dx= a f X dx+ b f x dxno matter what the order of a, b,禾廿 c.性质 4 如果在区间!a,b 1上 f x 三1,贝U 1dx= dx = b-a。“ = aProperty 4 If f x _1 for every x in a, bl,then1dx= dx = b - a .性质 5如果在区间l.a, b 1上 f x _ 0,则 f x dx丄0 a b 。Property 5 If f X is integrable and nonne
9、gative on the closed intervalla,b l,thenf x dx - 0 a b .推论 1。2 定积分的可比性(Comparison Property for Definite Integrals)如果在区间l.a,b 1上, f x岂g x,贝Ua f xdx E ag xdx,L f(x)dx 兰|f(x0x。用通俗明了的话说,就是定积分保持不等号。Corollary 1, 2 If f x andg X)is integrable on the closed interval fa,b】,andf x _g x for all x in l.a,b l.Th
10、enandf (x)dx 兰 jjf (x jdx。In in formal but descriptive Ian guage ,we say that the defi nite in tegral preservesin equalities.性质 6 积分的有界性(Boundedness Property for Definite Integrals )如果f x在la,b 上连续,且对任意的l.a,b 1,都有 m 乞 f x M,则m b - a I f x dx辽 MProperty6 If f x is continuous on l.a,b 1and m _ f x - M
11、for all x inl.a, b l.Thenm b - a j I f x dx 乞 M b - a。性质 7积分中值定理(Mean Value Theorem for Definite Integrals )如果函数f x在闭区间la,b 1上连续,则在积分区间a,b 1上至少存在一点,使下式成立a f xdx= f b-a,1 b f =L a f xdx b _a a称为函数f x在区间la,b 1上的平均值。Property 7 If f x is continuous on a, b,there is at least one number betweena and b suc
12、h thatL f (x)dx= f 仁)(b-a),a f XdXis called the average value of f x on a,b.5.2微积分基本定理(Fundamental Theorem of Calculus)一.积分上限的函数及其导数( Accumulation Function and Its Derivative )定理 1 微积分基本定理 (Fu ndame ntal Theorem of Calculus)X如果函数f X在区间la,b吐连续,则积分上限函数 X f t dt在la,b 上可导,并a v且它的导数是d f f (t dtx = = f x
13、a 乞 x 乞 b .Theorem 1 Let f x be continuous on the closed interval a,bl and let x be a (variable)point in a, b .Then X = ! f t dt is differentiable on a vxd J f (t dtla,b l,anda = f x a Ex Eb .dx定理 2 原函数存在定理(The Existenee Theorem of Antiderivative)如果函数f x在区间l.a,b 1上连续,则函数 x = Xf t dt就是f x在l.a,b 1上的一个
14、原函数1 1 a v vTheorem 2 If f x is continuous on the closed interval a,bthen X is1 1 aan antiderivative of f x on la, b I.二.牛顿-莱布尼茨公式(Newton-Leibniz Formula)定理 3 微积分第一基本定理 (first Fun dame ntal Theorem of Calculus)如果函数F x是连续函数f x在区间la,b 1上的一个原函数,则fxdx=Fb-Fa称上面的公式为 牛顿-莱布尼茨公式Theorem 3 Let f X be continuou
15、s(henee integrable ) ona,bl,and let F X be any antiderivative of f X on La, b).Thena f xdx=F b -F awhich is called the Newton-Leibniz Formula5.3定积分的换元法和分部积分法 (integration by Substitution and Definite Intgrals byParts)1.定积分的换元法 (Substitution Rule for Definite Integrals)2. 定理 定积分的换元法(Substitution Rule
16、 for Definite Integrals)假设函数f x在区间la,b 上连续,函数x二t满足条件讣:a,b; t在L:J:(或:,: I)上具有连续导数,且其值域R厂la,bl,则有b :a f XdX= f t t dt ,上面的公式叫做定积分的换元公式Theorem Let t have a continuous derivative on 上,-l(or-厂 I), and let f xbe continuous on la,bI .If : =a , : =b and the range of x is a subset ofl.a,b l.Thena f xdx= : f
17、t t dt which is called the substitution rule for definite integrals.二.定积分的分部积分法 (Definite Integration by Parts)根据不定积分的分部积分法,有二 u x v x uxvxdx_ b-| u x v x a-f v(x )u( x Jdx简写为b b buvdx=uv, vua a audv= I uv I - vdu .a a -According to the indefinite integration by parts ,fu(xy(x加ju x)vY x)dx=u( x)v( x
18、)- Ju( x)v( x)dx=u x)v( x)- av x u xdxFor simplicity ,ordx= I uv 1-vuudv= I uv -vdu.5.4 反常积分(Improper Integrals).无穷限的反常积分 (Improper Integrals with Infinite Limits of integration )tf x在区间a,- :上连续,取t a ,如果极限im_ f x dx存在且定义1 设函数为有限值,则此极限为函数f x在无穷区间 a, v 上的反常积分,记作 f x dx,即 ta f xdx=tlim af Xdx.这时也称反常积分
19、f x dx收敛;如果上述极限不存在,函数f x在无穷区间 a, 上的La -反常积分就没有意义,习惯上称为反常积分 f x dx发散.La. tLet f x be continuous on |a, : ,and t a .If the limit pm一. f x dxexists andhave finite value , the value is the improper integral of f x on 2,亠 i ,whichis deno ted-beby f x dx ,that is ,f x dx= lim f x dx,a t : . aWe say that t
20、he corresponding improper integral convergesOtherwise ,the integraldiverge.is siad to b _ 一设函数f (x j在区间(-o,b 上连续,取tcb,如果极限lim f(xpx存在且为有限值,则此极限为函数f x在无穷区间-:,b 1上的反常积分,记作b f x dx,即f xdx=tlim t f xdx,这时也称反常积分f x dx收敛;如果上述极限不存在,就称反常积分OQf x dx发散。 bLet f x be continuous on andt : b.If the limit lim t f x
21、 dxexists and havefinite value, the value is the improper integral of f x on 一匚亠b|,whichis denoted byf x dx ,that is ,oOWe say said tothat thexdx=tlim tf xdx,corresp onding improper in tegral con verges. Otherwise,the integral is定义设函数f x在区间上连续,如果反常积分0 :_:.f x dx和 0 f x dx都收敛,则称上述反 常积分 之和为函数f x在无穷区间上
22、的反常积分,记作xdx,即 0 :;f Xdx= J xdx+ 0 f xdx0 t=lim f x dx+ limt . t t , 0f x dx这时也称反常积分 f x dx收敛;否则就称反常积分Let f x be continuous on :匚匕:f bothf x dx and f x dx con verge, 0bothe n I f x dx is said to con verge and havevalue_;-f x dx= J x dx+ 0 f xdx专m t f xdx+tlim .0f xdx.、无界函数的反常积分 (Improper Integra ls o
23、f Infinite Integrands)定义 无界函数反常积分 (Improper Integra ls of Infinite Integrand)b tf (x)dx = lim f (x)dxa t b-a如果等式右边的极限存在且为有限值 ,此时称反常积分收敛,否则称反常积分发散.Deintion Let f (x) be continuous on the half-open interval la,b and supposethat lim | f (x) .Thent ff (x)dx lim f (x)dxa t Provided that this limit exists
24、 and is finite ,in which case we say that the integral con verge.Otherwise,we say that the in tegral diverges.无界函数的反常积分 (Improper Integra ls of Infinite Integrands)设函数f(x)在半开半闭区间 a,b 1上连续,且 严.“(X)| =:,f (x)dx = lim f (x)dx,a t aDeintion Let f (x) be continuous on the half-open interval a,b land supp
25、ose thatlim(x) =.The ntTa f (x)dx=lim f (x)dxa Ja aProvided that this limit exists and is finite ,in which case we say that the integralcon verge.Otherwise,we say that the in tegral diverges.积分函数在内点极限为g的反常积分 (Integrands That are Infinite at an Interior Point)设函数在f (x)在la,b】上除点c(avcb)外连续,且lim f(x)|=,则定义XJcb c ba f (x)dx = a f (x)dx c f (x)dxt b=lim f (x)dx lim f (x) dxtc归 Jc:- t如果等式右边的两个反常积分都收敛,否则称反常积分f (x)dx 发散.Let f (x) be con tin uous on la, b .1 except at a nun ber c ,where a : c . b ,and二:.The n we defi nesuppose thatlim f (x)XTf (x)dx = i f (x)dx 亠 i f (x)dxa a 力t_C _ a t_c
copyright@ 2008-2022 冰豆网网站版权所有
经营许可证编号:鄂ICP备2022015515号-1