ImageVerifierCode 换一换
格式:DOCX , 页数:7 ,大小:31.98KB ,
资源ID:16994185      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/16994185.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(高考数学总复习第十章计数原理概率第2讲排列与组合学案Word格式.docx)为本站会员(b****4)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

高考数学总复习第十章计数原理概率第2讲排列与组合学案Word格式.docx

1、(1)n(n1)(n2)(nm1)(2)(n,mN*,且mn).特别地1性质(1)0!1;n!(2);诊 断 自 测1.判断正误(在括号内打“”或“”)(1)所有元素完全相同的两个排列为相同排列.()(2)两个组合相同的充要条件是其中的元素完全相同.()(3)若组合式,则xm成立.()(4).()解析元素相同但顺序不同的排列是不同的排列,故(1)不正确;若,则xm或nm,故(3)不正确.答案(1)(2)(3)(4)2.从4本不同的课外读物中,买3本送给3名同学,每人各1本,则不同的送法种数是()A.12 B.24 C.64 D.81解析4本不同的课外读物选3本分给3位同学,每人一本,则不同的分

2、配方法为24.答案B3.(选修23P28A17改编)从4名男同学和3名女同学中选出3名参加某项活动,则男女生都有的选法种数是()A.18 B.24 C.30 D.36解析法一选出的3人中有2名男同学1名女同学的方法有18种,选出的3人中有1名男同学2名女同学的方法有12种,故3名学生中男女生都有的选法有30种.法二从7名同学中任选3名的方法数,再除去所选3名同学全是男生或全是女生的方法数,即30.答案C4.(2017浙江三市十二校联考)用1,2,3,4,5,6这六个数字组成没有重复数字的六位数共有个;其中1,3,5三个数字互不相邻的六位数有个.解析用1,2,3,4,5,6组成没有重复数字六位数

3、共有720个;将1,3,5三个数字插入到2,4,6三个数字排列后所形成的4个空中的3个,故有144个.答案7201445.用数字1,2,3,4,5组成的无重复数字的四位偶数的个数为(用数字作答).解析末位数字排法有,其他位置排法有种,共有48种.答案486.(2017绍兴调研)某市委从组织机关10名科员中选3人担任驻村第一书记,则甲、乙至少有1人入选,而丙没有入选的不同选法的种数为(用数字作答).解析法一(直接法)甲、乙两人均入选,有种.甲、乙两人只有1人入选,有种方法,由分类加法计数原理,共有49(种)选法.法二(间接法)从9人中选3人有种方法.其中甲、乙均不入选有种方法,满足条件的选排方法

4、是843549(种).答案49考点一排列问题【例1】 (2017河南校级月考)3名女生和5名男生排成一排.(1)如果女生全排在一起,有多少种不同排法?(2)如果女生都不相邻,有多少种排法?(3)如果女生不站两端,有多少种排法?(4)其中甲必须排在乙前面(可不邻),有多少种排法?(5)其中甲不站最左边,乙不站最右边,有多少种排法?解(1)(捆绑法)由于女生排在一起,可把她们看成一个整体,这样同五个男生合在一起有6个元素,排成一排有种排法,而其中每一种排法中,三个女生间又有种排法,因此共有4 320(种)不同排法.(2)(插空法)先排5个男生,有种排法,这5个男生之间和两端有6个位置,从中选取3个

5、位置排女生,有种排法,因此共有14 400(种)不同排法.(3)法一(位置分析法)因为两端不排女生,只能从5个男生中选2人,有种排法,剩余的位置没有特殊要求,有种排法,因此共有法二(元素分析法)从中间6个位置选3个安排女生,有种排法,其余位置无限制,有种排法,因此共有(4)8名学生的所有排列共种,其中甲在乙前面与乙在甲前面的各占其中,符合要求的排法种数为20 160(种).(5)甲、乙为特殊元素,左、右两边为特殊位置.法一(特殊元素法)甲在最右边时,其他的可全排,有种;甲不在最右边时,可从余下6个位置中任选一个,有种;而乙可排在除去最右边位置后剩余的6个中的任一个上,有种;其余人6个人进行全排

6、列,有种.共有种.由分类加法计数原理,共有30 960(种).法二(特殊位置法)先排最左边,除去甲外,有种,余下7个位置全排,有种,但应剔除乙在最右边时的排法种,因此共有法三(间接法)8个人全排,共种,其中,不合条件的有甲在最左边时,有种,乙在最右边时,有种,其中都包含了甲在最左边,同时乙在最右边的情形,有种.因此共有230 960(种).规律方法(1)对于有限制条件的排列问题,分析问题时有位置分析法、元素分析法,在实际进行排列时一般采用特殊元素优先原则,即先安排有限制条件的元素或有限制条件的位置,对于分类过多的问题可以采用间接法.(2)对相邻问题采用捆绑法、不相邻问题采用插空法、定序问题采用

7、倍缩法是解决有限制条件的排列问题的常用方法.【训练1】 (1)(2017新余二模)7人站成两排队列,前排3人,后排4人,现将甲、乙、丙三人加入队列,前排加一人,后排加两人,其他人保持相对位置不变,则不同的加入方法种数为()A.120 B.240 C.360 D.480(2)(2017抚顺模拟)某班准备从甲、乙等七人中选派四人发言,要求甲乙两人至少有一人参加,那么不同的发言顺序有()A.30 B.600 C.720 D.840解析(1)第一步,从甲、乙、丙三人选一个加到前排,有3种,第二步,前排3人形成了4个空,任选一个空加一人,有4种,第三步,后排4人形成了5个空,任选一个空加一人有5种,此时

8、形成6个空,任选一个空加一人,有6种,根据分步计数原理有3456360种方法.(2)若只有甲乙其中一人参加,有480种方法;若甲乙两人都参加,有240种方法,则共有480240720种方法,故选C.答案(1)C(2)C考点二组合问题【例2】 某市工商局对35种商品进行抽样检查,已知其中有15种假货.现从35种商品中选取3种.(1)其中某一种假货必须在内,不同的取法有多少种?(2)其中某一种假货不能在内,不同的取法有多少种?(3)恰有2种假货在内,不同的取法有多少种?(4)至少有2种假货在内,不同的取法有多少种?(5)至多有2种假货在内,不同的取法有多少种?解(1)从余下的34种商品中,选取2种

9、有561种,某一种假货必须在内的不同取法有561种.(2)从34种可选商品中,选取3种,有种或者5 984种.某一种假货不能在内的不同取法有5 984种.(3)从20种真货中选取1件,从15种假货中选取2件有2 100种.恰有2种假货在内的不同的取法有2 100种.(4)选取2种假货有种,选取3件假货有种,共有选取方式2 1004552 555种.至少有2种假货在内的不同的取法有2 555种.(5)选取3件的总数为,因此共有选取方式6 5454556 090种.至多有2种假货在内的不同的取法有6 090种.规律方法组合问题常有以下两类题型变化:(1)“含有”或“不含有”某些元素的组合题型;“含

10、”,则先将这些元素取出,再由另外元素补足;“不含”,则先将这些元素剔除,再从剩下的元素中去选取.(2)“至少”或“至多”含有几个元素的组合题型:解这类题必须十分重视“至少”与“至多”这两个关键词的含义,谨防重复与漏解.用直接法和间接法都可以求解,通常用直接法分类复杂时,考虑逆向思维,用间接法处理.【训练2】 (1)(2017邯郸一模)现有6个不同的白球,4个不同的黑球,任取4个球,则至少有两个黑球的取法种数是()A.90 B.115 C.210 D.385湖州市质检)若从1,2,3,9这9个整数中同时取4个不同的数,其和为偶数,则不同的取法共有()A.60种 B.63种 C.65种 D.66种

11、解析(1)分三类,取2个黑球有90种,取3个黑球有24种,取4个黑球有1种,故共有90241115种取法,选B.(2)共有4个不同的偶数和5个不同的奇数,要使和为偶数,则4个数全为奇数,或全为偶数,或2个奇数和2个偶数,共有不同的取法有66(种).答案(1)B(2)D考点三排列、组合的综合应用【例3】 4个不同的球,4个不同的盒子,把球全部放入盒内.(1)恰有1个盒不放球,共有几种放法?(2)恰有1个盒内有2个球,共有几种放法?(3)恰有2个盒不放球,共有几种放法?解(1)为保证“恰有1个盒不放球”,先从4个盒子中任意取出去一个,问题转化为“4个球,3个盒子,每个盒子都要放入球,共有几种放法?

12、”即把4个球分成2,1,1的三组,然后再从3个盒子中选1个放2个球,其余2个球放在另外2个盒子内,由分步乘法计数原理,共有144(种).(2)“恰有1个盒内有2个球”,即另外3个盒子放2个球,每个盒子至多放1个球,也即另外3个盒子中恰有一个空盒,因此,“恰有1个盒内有2个球”与“恰有1个盒不放球”是同一件事,所以共有144种放法.(3)确定2个空盒有种方法.4个球放进2个盒子可分成(3,1)、(2,2)两类,第一类有序不均匀分组有种方法;第二类有序均匀分组有种方法.故共有()84(种).规律方法(1)解排列组合问题常以元素(或位置)为主体,即先满足特殊元素(或位置),再考虑其他元素(或位置).

13、对于排列组合的综合题目,一般是将符合要求的元素取出或进行分组,再对取出的元素或分好的组进行排列.(2)不同元素的分配问题,往往是先分组再分配.在分组时,通常有三种类型:不均匀分组;均匀分组;部分均匀分组,注意各种分组类型中,不同分组方法的差异.其次对于相同元素的“分配”问题,常用的方法是采用“隔板法”.【训练3】 (1)某校高二年级共有6个班级,现从外地转入4名学生,要安排到该年级的两个班级且每班安排2名,则不同的安排方案种数为() D.2(2)在8张奖券中有一、二、三等奖各1张,其余5张无奖.将这8张奖券分配给4个人,每人2张,不同的获奖情况有种(用数字作答).解析(1)法一将4人平均分成两

14、组有种方法,将此两组分配到6个班级中的2个班有(种).所以不同的安排方法有(种).法二先从6个班级中选2个班级有种不同方法,然后安排学生有种,故有(种).(2)把8张奖券分4组有两种分法,一种是分(一等奖,无奖)、(二等奖,无奖)、(三等奖,无奖)、(无奖,无奖)四组,分给4人有种分法;另一种是一组两个奖,一组只有一个奖,另两组无奖,共有种分法,再分给4人有种分法,所以不同获奖情况种数为243660.答案(1)B(2)60思想方法1.对于有附加条件的排列、组合应用题,通常从三个途径考虑(1)以元素为主考虑,即先满足特殊元素的要求,再考虑其他元素.(2)以位置为主考虑,即先满足特殊位置的要求,再

15、考虑其他位置.(3)先不考虑附加条件,计算出排列数或组合数,再减去不合要求的排列数或组合数.2.排列、组合问题的求解方法与技巧(1)特殊元素优先安排;(2)合理分类与准确分步;(3)排列、组合混合问题先选后排;(4)相邻问题捆绑处理;(5)不相邻问题插空处理;(6)定序问题排除法处理;(7)分排问题直排处理;(8)“小集团”排列问题先整体后局部;(9)构造模型;(10)正难则反,等价条件.易错防范1.区分一个问题属于排列问题还是组合问题,关键在于是否与顺序有关.2.解受条件限制的排列、组合题,通常有直接法(合理分类)和间接法(排除法).分类时标准应统一,避免出现重复或遗漏.3.解组合应用题时,应注意“至少”、“至多”、“恰好”等词的含义.4.对于分配问题,一般先分组,再分配,注意平均分组与不平均分组的区别,避免重复或遗漏.

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1