1、40?若存在,求出t的值,并求出此时P,E两点间的距离;若不存在,请说明理由24(12分)(2013青岛)已知:如图,ABCD中,AD=3cm,CD=1cm,B=45,点P从点A出发,沿AD方向匀速运动,速度为3cm/s;点Q从点C出发,沿CD方向匀速运动,速度为1cm/s,连接并延长QP交BA的延长线于点M,过M作MNBC,垂足是N,设运动时间为t(s)(0t1)解答下列问题:(1)当t为何值时,四边形AQDM是平行四边形?(2)设四边形ANPM的面积为y(cm2),求y与t之间的函数关系式:(3)是否存在某一时刻t,使四边形ANPM的面积是平行四边形ABCD的面积的一半?若存在,求出相应的
2、t值;若不存在,说明理由(4)连接AC,是否存在某一时刻t,使NP与AC的交点把线段AC分成:1的两部分?24(12分)(2012青岛)已知:如图,在RtABC中,C=90,AC=6cm,BC=8cm,D、E分别是AC、AB的中点,连接DE,点P从点D出发,沿DE方向匀速运动,速度为1cm/s;同时,点Q从点B出发,沿BA方向匀速运动,速度为2cm/s,当点P停止运动时,点Q也停止运动连接PQ,设运动时间为t(s)(0t4)解答下列问题:(1)当t为何值时,PQAB?(2)当点Q在BE之间运动时,设五边形PQBCD的面积为y(cm2),求y与t之间的函数关系式;(3)在(2)的情况下,是否存在
3、某一时刻t,使PQ分四边形BCDE两部分的面积之比为SPQE:S五边形PQBCD=1:29?若存在,求出此时t的值以及点E到PQ的距离h;24(12分)(2011青岛)如图,在ABC中,AB=AC=10cm,BDAC于点D,且BD=8cm点M从点A出发,沿AC的方向匀速运动,速度为2cm/s;同时直线PQ由点B出发,沿BA的方向匀速运动,速度为1cm/s,运动过程中始终保持PQAC,直线PQ交AB于点P、交BC于点Q、交BD于点F连接PM,设运动时间为ts(0t5)(1)当t为何值时,四边形PQCM是平行四边形?(2)设四边形PQCM的面积为ycm2,求y与t之间的函数关系式;(3)是否存在某
4、一时刻t,使S四边形PQCM=SABC?若存在,求出t的值;若不存在,说明理由;(4)连接PC,是否存在某一时刻t,使点M在线段PC的垂直平分线上?若存在,求出此时t的值;24(12分)(2010青岛)已知:把RtABC和RtDEF按如图(1)摆放(点C与点E重合),点B、C(E)、F在同一条直线上ACB=EDF=90,DEF=45,AC=8cm,BC=6cm,EF=9cm如图(2),DEF从图(1)的位置出发,以1cm/s的速度沿CB向ABC匀速移动,在DEF移动的同时,点P从ABC的顶点B出发,以2cm/s的速度沿BA向点A匀速移动当DEF的顶点D移动到AC边上时,DEF停止移动,点P也随
5、之停止移动、DE与AC相交于点Q,连接PQ,设移动时间为t(s)(0t4.5)解答下列问题:(1)当t为何值时,点A在线段PQ的垂直平分线上?(2)连接PE,设四边形APEC的面积为y(cm2),求y与t之间的函数关系式;是否存在某一时刻t,使面积y最小?若存在,求出y的最小值;(3)是否存在某一时刻t,使P、Q、F三点在同一条直线上?24(12分)(2009青岛)如图,在梯形ABCD中,ADBC,AD=6cm,CD=4cm,BC=BD=10cm,点P由B出发沿BD方向匀速运动,速度为1cm/s;同时,线段EF由DC出发沿DA方向匀速运动,速度为1cm/s,交BD于Q,连接PE若设运动时间为t
6、(s)(0t5)解答下列问题:(1)当t为何值时,PEAB;(2)设PEQ的面积为y(cm2),求y与t之间的函数关系式;(3)是否存在某一时刻t,使SPEQ=SBCD?(4)连接PF,在上述运动过程中,五边形PFCDE的面积是否发生变化?说明理由24(12分)(2008青岛)已知:如图,在RtACB中,C=90,AC=4cm,BC=3cm,点P由B出发沿BA方向向点A匀速运动,速度为1cm/s;点Q由A出发沿AC方向向点C匀速运动,速度为2cm/s;连接PQ若设运动的时间为t(s)(0t2),解答下列问题:(1)当t为何值时,PQBC;(2)设AQP的面积为y(cm2),求y与t之间的函数关
7、系式;(3)是否存在某一时刻t,使线段PQ恰好把RtACB的周长和面积同时平分?(4)如图,连接PC,并把PQC沿QC翻折,得到四边形PQPC,那么是否存在某一时刻t,使四边形PQPC为菱形?若存在,求出此时菱形的边长;24(12分)(2007青岛)已知:如图,ABC是边长3cm的等边三角形,动点P、Q同时从A、B两点出发,分别沿AB、BC方向匀速移动,它们的速度都是1cm/s,当点P到达点B时,P、Q两点停止运动设点P的运动时间为t(s),解答下列问题:(1)当t为何值时,PBQ是直角三角形?(2)设四边形APQC的面积为y(cm2),求y与t的关系式;是否存在某一时刻t,使四边形APQC的
8、面积是ABC面积的三分之二?如果存在,求出相应的t值;不存在,说明理由;(3)设PQ的长为x(cm),试确定y与x之间的关系式24(12分)(2006青岛)如图,有两个形状完全相同的直角三角形ABC和EFG叠放在一起(点A与点E重合),已知AC=8cm,BC=6cm,C=90,EG=4cm,EGF=90,O是EFG斜边上的中点如图,若整个EFG从图的位置出发,以1cm/s的速度沿射线AB方向平移,在EFG平移的同时,点P从EFG的顶点G出发,以1cm/s的速度在直角边GF上向点F运动,当点P到达点F时,点P停止运动,EFG也随之停止平移设运动时间为x(s),FG的延长线交AC于H,四边形OAH
9、P的面积为y(cm2)(不考虑点P与G、F重合的情况)(1)当x为何值时,OPAC;(2)求y与x之间的函数关系式,并确定自变量x的取值范围;(3)是否存在某一时刻,使四边形OAHP面积与ABC面积的比为13:24?若存在,求出x的值;若不存在,说明理由(参考数据:1142=12996,1152=13225,1162=13456或4.42=19.36,4.52=20.25,4.62=21.16)22(12分)(2005青岛)操作:在ABC中,AC=BC=2,C=90,将一块等腰直角三角板的直角顶点放在斜边AB的中点P处,将三角板绕点P旋转,三角板的两直角边分别交射线AC、CB于D、E两点图1,2,3是旋转三角板得到的图形中的3种情况研究:(1)三角板绕点P旋转,观察线段PD和PE之间有什么数量关系,并结合图2加以证明;(2)三角板绕点P旋转,PBE是否能成为等腰三角形?若能,指出所有情况(即写出PBE为等腰三角形时CE的长);若不能,请说明理由;(3)若将三角板的直角顶点放在斜边AB上的M处,且AM:MB=1:3,和前面一样操作,试问线段MD和ME之间有什么数量关系?并结合图4加以证明
copyright@ 2008-2022 冰豆网网站版权所有
经营许可证编号:鄂ICP备2022015515号-1