1、(1)若甲和乙之间进行三场比赛,求甲恰好胜两场的概率;(2)若四名运动员每两人之间进行一场比赛,求甲恰好胜两场的概率.解析(1)甲和乙之间进行三场比赛,甲恰好胜两场的概率P=0.620.4=0.432.(2)记“甲胜乙”“甲胜丙”“甲胜丁”三个事件分别为A,B,C,则P(A)=0.6,P(B)=0.8,P(C)=0.9.则四名运动员每两人之间进行一场比赛,甲恰好胜两场的概率P(AB+AC+BC)=P(A)P(B)(1-P(C)+P(A)(1-P(B)P(C)+(1-P(A)P(B)P(C)=0.60.80.1+0.60.9+0.40.9=0.444.考点二n次独立重复试验模型及二项分布1.(2
2、018江苏苏州新区一中月考)在一次数学考试中,第21题和第22题为选做题.规定每位考生必须且只需在其中选做一题.设4名考生选做每一道题的概率均为.(1)求其中甲、乙两名学生选做同一道题的概率;(2)设这4名考生中选做第22题的学生个数为,求的概率分布列.解析(1)记A表示事件“甲选做第21题”,B表示事件“乙选做第21题”,则“甲选做第22题”为,“乙选做第22题”为,则甲、乙两名学生选做同一道题为事件AB+.事件A,B相互独立,相互独立,P(AB+)=P(AB)+P()=P(A)P(B)+P()P()=+=.(2)随机变量的可能取值为0,1,2,3,4,且B,P(=k)=(k=0,1,2,3
3、,4),随机变量的分布列为1234P2.(2019届江苏常州二中月考)某人向一目标射击4次,每次击中目标的概率为.该目标分为3个不同的部分,第一、二、三部分面积之比为136,击中目标时,击中任何一部分的概率与其面积成正比.(1)设X表示目标被击中的次数,求X的分布列;(2)若目标被击中2次,A表示事件“第一部分至少被击中1次或第二部分被击中2次”,求P(A).解析(1)依题意知XB,P(X=0)=,P(X=1)=,P(X=2)=,P(X=3)=,P(X=4)=.X的分布列为X(2)设Ai表示事件“第一次击中目标时,击中第i部分”i=1,2.Bi表示事件“第二次击中目标时,击中第i部分”,i=1
4、,2.依题意知P(A1)=P(B1)=0.1,P(A2)=P(B2)=0.3,A=A1B1A1B1A2B2,所求的概率为P(A)=P(A1)+P(B1)+P(A1B1)+P(A2B2)=P(A1)P()+P()P(B1)+P(A1)P(B1)+P(A2)P(B2)=0.10.9+0.90.1+0.10.1+0.30.3=0.28.炼技法【方法集训】方法独立重复试验及二项分布1.(2019届江苏常州一中周练)某公交公司对某线路客源情况统计显示,公交车从每个停靠点出发后,乘客人数及频率如下表:人数0671213181924253031人及以上频率0.100.150.250.20(1)从每个停靠点出
5、发后,乘客人数不超过24人的概率约是多少?(2)全线途经10个停靠点,若有2个以上(含2个)停靠点出发后乘客人数超过18人的概率大于0.9,公交公司就考虑在该线路增加一个班次,请问该线路需要增加班次吗?解析(1)由题表知,乘客人数不超过24人的频率是0.10+0.15+0.25+0.20=0.70,则从每个停靠点出发后,乘客人数不超过24人的概率约是0.70.(2)由题表知,从每个停靠点出发后,乘客人数超过18人的概率约为,设途经10个停靠站,乘车人数超过18人的个数为X,则XB,P(X2)=1-P(X=0)-P(X=1)=1-=1-10=0.9,故该线路需要增加班次.2.(2015湖南,18
6、,12分)某商场举行有奖促销活动,顾客购买一定金额的商品后即可抽奖.每次抽奖都是从装有4个红球、6个白球的甲箱和装有5个红球、5个白球的乙箱中,各随机摸出1个球.在摸出的2个球中,若都是红球,则获一等奖;若只有1个红球,则获二等奖;若没有红球,则不获奖.(1)求顾客抽奖1次能获奖的概率;(2)若某顾客有3次抽奖机会,记该顾客在3次抽奖中获一等奖的次数为X,求X的分布列和数学期望.解析(1)记事件A1=从甲箱中摸出的1个球是红球,A2=从乙箱中摸出的1个球是红球,B1=顾客抽奖1次获一等奖,B2=顾客抽奖1次获二等奖,C=顾客抽奖1次能获奖.由题意,得A1与A2相互独立,A1与A2互斥,B1与B
7、2互斥,且B1=A1A2,B2=A1+A2,C=B1+B2.因为P(A1)=,P(A2)=,所以P(B1)=P(A1A2)=P(A1)P(A2)=,P(B2)=P(A1+A2)=P(A1)+P(A2)=P(A1)P()+P()P(A2)=P(A1)1-P(A2)+1-P(A1)P(A2)=故所求概率为P(C)=P(B1+B2)=P(B1)+P(B2)=+=.(2)顾客抽奖3次可视为3次独立重复试验,由(1)知,顾客抽奖1次获一等奖的概率为,所以XB.于是P(X=0)=,P(X=3)=.故X的分布列为X的数学期望为E(X)=3过专题【五年高考】统一命题、省(区、市)卷题组1.(2015课标改编,
8、4,5分)投篮测试中,每人投3次,至少投中2次才能通过测试.已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为.答案0.6482.(2014山东,18,12分)乒乓球台面被球网分隔成甲、乙两部分,如图,甲上有两个不相交的区域A,B,乙被划分为两个不相交的区域C,D,某次测试要求队员接到落点在甲上的来球后向乙回球.规定:回球一次,落点在C上记3分,在D上记1分,其他情况记0分.对落点在A上的来球,队员小明回球的落点在C上的概率为,在D上的概率为;对落点在B上的来球,小明回球的落点在C上的概率为,在D上的概率为.假设共有两次来球且落在A,B上各一次,小明的两
9、次回球互不影响.求:(1)小明两次回球的落点中恰有一次的落点在乙上的概率;(2)两次回球结束后,小明得分之和的分布列与数学期望.解析(1)记Ai为事件“小明对落点在A上的来球回球的得分为i分”(i=0,1,3),则P(A3)=,P(A1)=,P(A0)=1-=;记Bi为事件“小明对落点在B上的来球回球的得分为i分”(i=0,1,3),则P(B3)=,P(B1)=,P(B0)=1-=.记D为事件“小明两次回球的落点中恰有1次的落点在乙上”.由题意得,D=A3B0+A1B0+A0B1+A0B3,由事件的独立性和互斥性,得P(D)=P(A3B0+A1B0+A0B1+A0B3)=P(A3B0)+P(A
10、1B0)+P(A0B1)+P(A0B3)=P(A3)P(B0)+P(A1)P(B0)+P(A0)P(B1)+P(A0)P(B3)所以小明两次回球的落点中恰有1次的落点在乙上的概率为.(2)随机变量可能的取值为0,1,2,3,4,6,P(=0)=P(A0B0)=P(=1)=P(A1B0+A0B1)=P(A1B0)+P(A0B1)=P(=2)=P(A1B1)=P(=3)=P(A3B0+A0B3)=P(A3B0)+P(A0B3)=P(=4)=P(A3B1+A1B3)=P(A3B1)+P(A1B3)=P(=6)=P(A3B3)=可得随机变量的分布列为6所以数学期望E=0+1+2+3+4+63.(201
11、4大纲全国,20,12分)设每个工作日甲、乙、丙、丁4人需使用某种设备的概率分别为0.6、0.5、0.5、0.4,各人是否需使用设备相互独立.(1)求同一工作日至少3人需使用设备的概率;(2)X表示同一工作日需使用设备的人数,求X的数学期望.解析记Ai表示事件:同一工作日乙、丙中恰有i人需使用设备,i=0,1,2,甲需使用设备,丁需使用设备,同一工作日至少3人需使用设备.(1)D=A1BC+A2B+A2C,P(B)=0.6,P(C)=0.4,P(Ai)=0.52,i=0,1,2,(3分)所以P(D)=P(A1C)=P(A1C)+P(A2B)+P(A2=P(A1)P(B)P(C)+P(A2)P(
12、B)+P(A2)P()P(C)=0.31.(6分)(2)X的可能取值为0,1,2,3,4,则P(X=0)=P(A0)=P()P(A0)P()=(1-0.6)0.52(1-0.4)=0.06,P(X=1)=P(B+C+A1=P(B)P(A0)P()+P()P(A0)P(C)+P()P(A1)P()=0.6(1-0.4)+(1-0.6)0.4+(1-0.6)2(1-0.4)=0.25,P(X=4)=P(A2C)=P(A2)P(B)P(C)=0.520.60.4=0.06,P(X=3)=P(D)-P(X=4)=0.25,P(X=2)=1-P(X=0)-P(X=1)-P(X=3)-P(X=4)=1-0
13、.06-0.25-0.25-0.06=0.38,(10分)数学期望EX=0P(X=0)+1P(X=1)+2P(X=2)+3P(X=3)+4P(X=4)=0.25+20.38+30.25+40.06=2.(12分)1.(2018课标全国理改编,8,5分)某群体中的每位成员使用移动支付的概率都为p,各成员的支付方式相互独立.设X为该群体的10位成员中使用移动支付的人数,DX=2.4,P(X=4)P(X=6),则p=.答案0.62.(2016四川理,12,5分)同时抛掷两枚质地均匀的硬币,当至少有一枚硬币正面向上时,就说这次试验成功,则在2次试验中成功次数X的均值是.答案3.(2015广东,13,5
14、分)已知随机变量X服从二项分布B(n,p).若E(X)=30,D(X)=20,则p=.4.(2014陕西,19,12分)在一块耕地上种植一种作物,每季种植成本为1 000元,此作物的市场价格和这块地上的产量均具有随机性,且互不影响,其具体情况如下表:作物产量(kg)300500概率0.5作物市场价格(元/kg)100.40.6(1)设X表示在这块地上种植1季此作物的利润,求X的分布列;(2)若在这块地上连续3季种植此作物,求这3季中至少有2季的利润不少于2 000元的概率.解析(1)设A表示事件“作物产量为300 kg”,B表示事件“作物市场价格为6元/kg”,由题设知P(A)=0.5,P(B
15、)=0.4,利润=产量市场价格-成本,X所有可能的取值为50010-1 000=4 000,5006-1 000=2 000,30010-1 000=2 000,3006-1 000=800.P(X=4 000)=P()P()=(1-0.5)(1-0.4)=0.3,P(X=2 000)=P()P(B)+P(A)P()=(1-0.5)0.4+0.5(1-0.4)=0.5,P(X=800)=P(A)P(B)=0.50.4=0.2,所以X的分布列为4 0002 0008000.30.2(2)设Ci表示事件“第i季利润不少于2 000元”(i=1,2,3),由题意知C1,C2,C3相互独立,由(1)知
16、,P(Ci)=P(X=4 000)+P(X=2 000)=0.3+0.5=0.8(i=1,2,3),3季的利润均不少于2 000元的概率为P(C1C2C3)=P(C1)P(C2)P(C3)=0.83=0.512;3季中有2季利润不少于2 000元的概率为P(C2C3)+P(C1C3)+P(C1C2)=30.820.2=0.384,所以,这3季中至少有2季的利润不少于2 000元的概率为0.512+0.384=0.896.评析本题考查了离散型随机变量的分布列,相互独立事件,二项分布等知识;考查应用意识,分类讨论的意识、运算求解的能力.教师专用题组1.(2014四川,17,12分)一款击鼓小游戏的
17、规则如下:每盘游戏都需击鼓三次,每次击鼓要么出现一次音乐,要么不出现音乐;每盘游戏击鼓三次后,出现一次音乐获得10分,出现两次音乐获得20分,出现三次音乐获得100分,没有出现音乐则扣除200分(即获得-200分).设每次击鼓出现音乐的概率为,且各次击鼓出现音乐相互独立.(1)设每盘游戏获得的分数为X,求X的分布列;(2)玩三盘游戏,至少有一盘出现音乐的概率是多少?(3)玩过这款游戏的许多人都发现,若干盘游戏后,与最初的分数相比,分数没有增加反而减少了.请运用概率统计的相关知识分析分数减少的原因.解析(1)X可能的取值为10,20,100,-200.根据题意,有P(X=10)=P(X=20)=
18、P(X=100)=P(X=-200)=20100-200(2)设“第i盘游戏没有出现音乐”为事件Ai(i=1,2,3),则P(A1)=P(A2)=P(A3)=P(X=-200)=.所以,“三盘游戏中至少有一次出现音乐”的概率为1-P(A1A2A3)=1-=1-=.因此,玩三盘游戏至少有一盘出现音乐的概率是.(3)X的数学期望为EX=10+20+100-200=-.这表明,获得的分数X的均值为负.因此,多次游戏之后分数减少的可能性更大.评析本题主要考查随机事件的概率、古典概型、独立重复试验、随机变量的分布列、数学期望等基础知识,考查运用概率与统计的知识与方法分析和解决实际问题的能力,考查运算求解
19、能力、应用意识和创新意识.2.(2013陕西理,19,12分)在一场娱乐晚会上,有5位民间歌手(1至5号)登台演唱,由现场数百名观众投票选出最受欢迎歌手.各位观众须彼此独立地在选票上选3名歌手,其中观众甲是1号歌手的歌迷,他必选1号,不选2号,另在3至5号中随机选2名.观众乙和丙对5位歌手的演唱没有偏爱,因此在1至5号中随机选3名歌手.(1)求观众甲选中3号歌手且观众乙未选中3号歌手的概率;(2)X表示3号歌手得到观众甲、乙、丙的票数之和,求X的分布列及数学期望.解析(1)设A表示事件“观众甲选中3号歌手”,B表示事件“观众乙选中3号歌手”,则P(A)=,P(B)=.事件A与B相互独立,观众甲
20、选中3号歌手且观众乙未选中3号歌手的概率为P(A)=P(A)P()=P(A)1-P(B)(2)设C表示事件“观众丙选中3号歌手”,则P(C)=,X可能的取值为0,1,2,3,且取这些值的概率分别为P(X=0)=P()=P(X=1)=P(A )+P(B)+P(C)P(X=2)=P(AB)+P(AC)+P(BC)P(X=3)=P(ABC)=X的数学期望EX=0=.【三年模拟】一、填空题(每小题5分,共20分)1.(2018江苏海门中学检测)打靶时甲每打10次,可中靶8次;乙每打10次,可中靶7次.若两人同时射击一个目标,则他们都中靶的概率是.2.(2019届江苏丹阳中学月考)如果生男孩和生女孩的概
21、率相等,则有3个小孩的家庭中女孩多于男孩的概率为.3.(2019届江苏太仓中学月考)端午节放假,甲回老家过节的概率为,乙、丙回老家过节的概率分别为,.假定三人的行动相互之间没有影响,那么这段时间内至少1人回老家过节的概率为.4.(2019届江苏盱眙中学月考)在四次独立重复试验中,事件A在每次试验中出现的概率相同,若事件A至少发生一次的概率为,则事件A恰好发生一次的概率为.二、解答题(共50分)5.(2018江苏徐州铜山中学期中)某同学在上学路上要经过A,B,C三个有红绿灯的路口,已知他在A,B,C三个路口遇到红灯的概率依次是,遇到红灯时停留的时间依次是40秒,20秒,80秒,且在各个路口遇到红
22、灯是相互独立的.(1)求这名同学在第三个路口C首次遇到红灯的概率;(2)记这名同学因遇到红灯停留的总时间为X秒,求X的概率分布列与期望E(X).解析(1)设这名同学在第三个路口C首次遇到红灯为事件M,因为事件M等于事件“这名同学在第一个路口A和第二个路口B都没有遇到红灯,在第三个路口C遇到红灯”,所以P(M)=答:这名同学在第三个路口C首次遇到红灯的概率为.(2)X的所有可能取值为0,20,40,60,80,100,120,140.P(X=0)=;P(X=40)=P(X=60)=P(X=80)=P(X=120)=P(X=140)=406080120140所以E(X)=0+40+60+80+12
23、0+140= .6.(2018江苏苏中三市、苏北四市三调)将4本不同的书随机放入如图所示的编号为1,2,3,4的四个抽屉中.(1)求4本书恰好放在四个不同抽屉中的概率;(2)设随机变量X表示放在2号抽屉中书的本数,求X的分布列和数学期望E(X).解析(1)将4本不同的书放入编号为1,2,3,4的四个抽屉中,共有44=256(种)不同放法.记“4本书恰好放在四个不同抽屉中”为事件A,则事件A共包含=24(个)基本事件,所以P(A)=,所以4本书恰好放在四个不同抽屉中的概率为.(2)解法一:X的所有可能取值为0,1,2,3,4,所以X的数学期望为E(X)=0=1.解法二:每本书放入2号抽屉的概率为
24、P(B)=,则P()=1-=.根据题意知XB,所以P(X=k)=,k=0,1,2,3,4,所以X的数学期望为E(X)=47.(2017江苏南京、盐城高三第一次模拟)某年级星期一至星期五每天下午排3节课,每天下午随机选择1节作为综合实践课(上午不排该课程),张老师与王老师分别任教甲、乙两个班的综合实践课程.(1)求这两个班“在星期一不同时上综合实践课”的概率;(2)设这两个班“在一周中同时上综合实践课的节数”为X,求X的分布列与数学期望E(X).解析(1)这两个班“在星期一不同时上综合实践课”的概率P=1-=.(2)X的可能取值为0,1,2,3,4,5,由题意得XB,P(X=k)=,k=0,1,2,3,4,5.则P(X=0)=P(X=1)=P(X=2)=P(X=3)=P(X=4)=,P(X=5)=5所以X的数学期望E(X)=01+2+3+4+5=.或E(X)=5=8.(2019届江苏溧阳中学月考)甲、乙两俱乐部举行乒乓球团体对抗赛.双方约定:比赛采取五场三胜制(先赢三场的队伍获得胜利,比赛结束);双方各派出三名队员,前三场每位队员各比赛一场.已知甲俱乐部派出队员A1,A2,
copyright@ 2008-2022 冰豆网网站版权所有
经营许可证编号:鄂ICP备2022015515号-1