1、dt 22m d x(t ) + kx(t ) = F (t )对上述方程中各项求拉氏变换得:ms 2 X (s) + kX (s) = F (s)所以,机械系统的传递函数为:G(s) =X (s) =F (s)1ms 2 + k2-2 解一:由图易得:i1 (t )R1 = u1 (t ) u2 (t ) uc (t ) + i1 (t )R2 = u2 (t ) duc (t ) i1 (t ) = Cdt由上述方程组可得无源网络的运动方程为:C ( R + R ) du2 (t ) u (t ) = CRdu1 (t ) u (t ) 1 2 dt+ 2 2 + 1C (R1 + R2
2、)sU 2 (s) + U 2 (s) = CR2 sU1 (s) + U1 (s) 所以,无源网络的传递函数为:G(s) = U 2 (s) =U1 (s)1 + sCR21 + sC(R1 + R2 )解二(运算阻抗法或复阻抗法):U (s) + R21 + R Cs 2 = Cs = 2 R + 1 + R1 + ( R + R )Cs1 1 21 Cs 22-5 解:按照上述方程的顺序,从输出量开始绘制系统的结构图,其绘制结果如下图所示:依次消掉上述方程中的中间变量 X 1 , X 2 , X 3 , 可得系统传递函数为:C(s) =R(s)G1 (s)G2 (s)G3 (s)G4 (
3、s)1 + G2 (s)G3 (s)G6 (s) + G3 (s)G4 (s)G5 (s) + G1 (s)G2 (s)G3 (s)G4 (s)G7 (s) G8 (s)2-6 解: 将 G1 (s) 与 G1 (s) 组成的并联环节和 G1 (s) 与 G1 (s) 组成的并联环节简化,它们的等效传递函数和简化结构图为:G12 (s) = G1 (s) + G2 (s)G34 (s) = G3 (s) G4 (s) 将 G12 (s), G34 (s) 组成的反馈回路简化便求得系统的闭环传递函数为:2-7 解:G12 (s)1 + G12 (s)G34 (s)= G1 (s) + G2 (s
4、)1 + G1 (s) + G2 (s)G3 (s) G4 (s)由上图可列方程组:E (s)G1 (s) C (s)H 2 (s)G2 (s) = C (s)R(s) H1(s) C (s)G2 (s)= E (s)联列上述两个方程,消掉 E (s) ,得传递函数为:G1 (s)G2 (s)1 + H1 (s)G1 (s) + H 2 (s)G2 (s)联列上述两个方程,消掉 C (s) ,得传递函数为:E(s) =1 + H 2 (s)G2 (s)2-8 解:将反馈回路简化,其等效传递函数和简化图为:0.4G (s) = 2s + 1 =1 + 0.4 * 0.52s + 15s + 3将
5、反馈回路简化,其等效传递函数和简化图为:2 G (s) = s + 0.3s + 1 =31 + 0.45s + 4.5s+ 5.9s + 3.4(s + 0.3s + 1)(5s + 3)将反馈回路简化便求得系统的闭环传递函数为:0.7 * (5s + 3) o (s) = 5s 3 + 4.5s 2 + 5.9s + 3.4 =3.5s + 2.1i (s)1 + 0.7 * Ks(5s + 3)5s 3+ (4.5 + 3.5K )s 2+ (5.9 + 2.1K )s + 3.45s 3-3 解:该二阶系统的最大超调量: p = e /1 2*100%当 p= 5% 时,可解上述方程得
6、: = 0.69= 5% 时,该二阶系统的过渡时间为:t s wn所以,该二阶系统的无阻尼自振角频率 wn3-4 解: 3t s= 30.69 * 2= 2.17由上图可得系统的传递函数:10 * (1 + Ks)C (s) =s(s + 2)1 + 10 * (1 + Ks)= 10 * (Ks + 1)s + 2 * (1 + 5K )s + 10所以 wn =10 ,wn = 1 + 5K 若= 0.5 时, K 0.116所以 K 0.116 时,= 0.5 系统单位阶跃响应的超调量和过渡过程时间分别为:*100% = e0.5*3.14 /10.52*100% 16.3%ts =0.
7、5 * 1.910 加入 (1 + Ks ) 相当于加入了一个比例微分环节,将使系统的阻尼比增大,可以有效地减小原系统的阶跃响应的超调量;同时由于微分的作用,使系统阶跃响应的速度(即变化率)提高了,从而缩短了过渡时间:总之,加入 (1 + Ks ) 后,系统响应性能得到改善。3-5 解:由上图可得该控制系统的传递函数:10K1二阶系统的标准形式为:C (s)s 2 + (10 + 1)s + 10Kw 2= n s 2 + 2w s + w2n n所以wn = 10K12wn = 10 + 1由p = e /t p =wn1 2 p = 9.5%t p = 0.5可得 = 0.6wn = 10
8、K1wn = 7.85由 和可得:K1 = 6.16 = 0.84= 0.643-6 解: 列出劳斯表为:因为劳斯表首列系数符号变号 2 次,所以系统不稳定。 列出劳斯表为:因为劳斯表首列系数全大于零,所以系统稳定。 列出劳斯表为:3-7 解:系统的闭环系统传递函数:K (s +1)=s(2s +1)(Ts +1) =1 + K (s +1)s(2s +1)(Ts +1)s(2s +1)(Ts +1) + K (s +1)2Ts3 + (T + 2)s 2 + (K +1)s + K列出劳斯表为:s3 2T K +1s2 T + 2 Ks1 (K +1)(T + 2) 2KT T + 2s0
9、KT 0 ,T + 2 0 , (K + 1)(T + 2) 2KT T + 2 0 , K 0K 0 , (K + 1)(T + 2) 2KT (K +1)(T + 2) 2KT = (T + 2) + KT + 2K 2KT= (T + 2) KT + 2K = (T + 2) K (T 2) K (T 2) (T + 2)3-9 解:由上图可得闭环系统传递函数:KK2 K32 3 2 3 2 3R(s) (1 + KK K a)s2 KK K bs KK K代入已知数据,得二阶系统特征方程:(1 + 0.1K )s2 0.1Ks K = 0s2 1 + 0.1K Ks1 0.1Ks0 K
10、可见,只要放大器10 K 0 ,系统就是稳定的。3-12 解:系统的稳态误差为:ess= lim e(t ) = lim sE (s) = lim st s0s 0 1 + G0 (s) G0 (s) =s(0.1s + 1)(0.5s + 1)系统的静态位置误差系数:K = lim G(s) = lim 10 = p s 0 0s 0 s(0.1s + 1)(0.5s + 1)系统的静态速度误差系数:K = lim sG(s) = lim10s= 10v s 0 0系统的静态加速度误差系数:K = lim s 2 G10s 2= 0a s0 0s0 s(0.1s + 1)(0.5s + 1)当 r (t ) = 1(t ) 时, R(s) = 1s= lim s* 1 = 0当 r (t ) = 4t 时, R(s) =s0 10 s1 +4s 2e = lim s* 4 = 0.4ss s 0 s 2当 r (t ) = t 2 时, R(s) =1 + 10s(0.1s + 1)
copyright@ 2008-2022 冰豆网网站版权所有
经营许可证编号:鄂ICP备2022015515号-1