ImageVerifierCode 换一换
格式:DOC , 页数:19 ,大小:819KB ,
资源ID:1580234      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/1580234.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2017年四川中考突破复习题型专项(十二)二次函数与几何图形.doc)为本站会员(wei****016)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

2017年四川中考突破复习题型专项(十二)二次函数与几何图形.doc

1、专项(十二)二次函数与几何图形的综合题类型1探究图形面积的数量关系及最值问题1(2016安徽)如图,二次函数yax2bx的图象经过点A(2,4)与B(6,0)(1)求a,b的值;(2)点C是该二次函数图象上A,B两点之间的一动点,横坐标为x(2x6)写出四边形OACB的面积S关于点C的横坐标x的函数解析式,并求S的最大值解:(1)将A(2,4)与B(6,0)代入yax2bx.得解得(2)过点A作x轴的垂线,垂足为D(2,0),连接CD,过点C作CEAD,CFx轴,垂足分别为点E,F.SOADODAD244,SACDADCE4(x2)2x4,SBCDBDCF4(x23x)x26x,则SSOADS

2、ACDSBCD4(2x4)(x26x)x28x.S关于x的函数解析式为Sx28x(2x6)S(x4)216.当x4时,四边形OACB的面积S取最大值,最大值为16.2(2016雅安中学一诊)如图,已知抛物线yax2xc与x轴相交于A,B两点,并与直线yx2交于B,C两点,其中点C是直线yx2与y轴的交点,连接AC.(1)求抛物线解析式;(2)求证:ABC为直角三角形;(3)在抛物线CB段上存在点P使得以A,C,P,B为顶点的四边形面积最大,请求出点P的坐标以及此时以A,C,P,B为顶点的四边形面积解:(1)直线yx2交x轴,y轴于B,C两点,B(4,0),C(0,2)yax2xc经过点B,C,

3、解得yx2x2.(2)令x2x20,解得x11,x24.OA1,OB4.AB5.AC2OA2OC25,BC2OC2OB220,AB225.AC2BC2AB2.ABC为直角三角形(3)连接CD,BD,过点P作PEAB,垂足为点E,直线EP交线段BC于点D.设直线BC的解析式为ykxb.将B(4,0),C(0,2)代入,得解得直线BC的解析式为yx2.设点D(a,a2),则点P(a,a2a2)PDPEDEa2a2(a2)a22a,当a2时,PD有最大值,PD的最大值为2.S四边形ACPBSACBSCBPABOCOBDP524DP52PD.当PD最大时,四边形ACPB的面积最大当点P的坐标为(2,3

4、)时,四边形ACPB的面积的最大值为5229.3(2015攀枝花)如图,已知抛物线yx2bxc与x轴交于A(1,0),B(3,0)两点,与y轴交于点C,抛物线的对称轴与抛物线交于点P,与直线BC相交于点M,连接PB.(1)求抛物线的解析式;(2)在(1)中位于第一象限内的抛物线上是否存在点D,使得BCD的面积最大?若存在,求出点D坐标及BCD面积的最大值;若不存在,请说明理由;(3)在(1)中的抛物线上是否存在点Q,使得QMB与PMB的面积相等?若存在,求出点Q的坐标;若不存在,请说明理由解:(1)把A,B两点坐标代入抛物线解析式,得解得抛物线解析式为yx22x3.(2)设D(t,t22t3)

5、,过点D作DHx轴于点H,连接DC,DB.令x0,则y3,C(0,3)SBCDS梯形DCOHSBDHSBOC(t22t33)t(3t)(t22t3)33t2t.0,当t时,即点D坐标为(,)时,SBCD有最大值,且最大面积为.(3)存在P(1,4),过点P且与BC平行的直线与抛物线的交点即为所求Q点之一,直线BC解析式为为yx3,过点P且与BC平行的直线为yx5.由解得Q1(2,3)直线PM的解析式为x1,直线BC的解析式yx3,M(1,2)设PM与x轴交于点E,PMEM2,过点E且与BC平行的直线为yx1.从而过点E且与BC平行的直线与抛物线的交点也为所求Q点之一联立解得Q2(,),Q3(,

6、)满足条件的Q点坐标为(2,3),(,)或(,)类型2探究线段的数量关系及最值问题4(2016成都青羊区二诊改编)已知抛物线yx2(1)x2(a0)与x轴交于A,B两点,与y轴相交于点C,且点A在点B的左侧(1)若抛物线过点D(2,2),求实数a的值;(2)在(1)的条件下,在抛物线的对称轴上找一点E,使AECE最小,求出点E的坐标解:(1)抛物线过点D(2,2),4(1)222,解得a4.(2)点A,B是抛物线与x轴的交点,点B是点A关于抛物线对称轴的对称点连接BC交对称轴于点E,则点E即为使AECE最小的点a4,抛物线解析式为yx2x2.令y0,则x2x20,解得x12,x24.令x0,则

7、y2.A(2,0),B(4,0),C(0,2),对称轴为直线x1.直线BC解析式为yx2.当x1时,y,E(1,)5(2015南充)已知抛物线yx2bxc与x轴交于点A(m2,0)和B(2m1,0)(点A在点B的左侧),与y轴相交于点C,顶点为P,对称轴为l:x1.(1)求抛物线解析式;(2)直线ykx2(k0)与抛物线相交于两点M(x1,y1),N(x2,y2)(x1x2),当|x1x2|最小时,求抛物线与直线的交点M和N的坐标;(3)首尾顺次连接点O,B,P,C构成多边形的周长为L.若线段OB在x轴上移动,求L最小时点O,B移动后的坐标及L的最小值解:(1)由题意,得1,b2.抛物线yx2

8、bxc与x轴交于点A(m2,0)和B(2m1,0),x2bxc0的解为m2和2m1.(m2)(2m1)b,(m2)(2m1)c.m1,c3.抛物线解析式为yx22x3.(2)联立得x2(k2)x10.x1x2(k2),x1x21,(x1x2)2(x1x2)24x1x2(k2)24.当k2时,(x1x2)2的最小值为4,即|x1x2|的最小值为2.解得x11,x21,则y10,y24.当|x1x2|最小时,抛物线与直线的交点为M(1,0),N(1,4)(3)由(1)得O(0,0),B(3,0),P(1,4),C(0,3)LOBBPPCCO,又线段OB平移过程中,OB,PC的长度不变,要使L最小,

9、只需BPCO最短如图,平移线段OC到BC,四边形OBCC是矩形C(3,3)作点P关于x轴(或OB)的对称点P(1,4),连接CP与x轴交于点B.设CP解析式为yaxn.解得yx.当y0时,x,B(,0)又3,故点B向左平移个单位,平移到B.同时,点O向左平移个单位,平移到O(,0),即线段OB向左平移个单位时,周长L最短此时,线段BP,CO之和最短为PC,OBOB3,CP.当线段OB向左平移个单位,即点O平移到O(,0),点B平移到B(,0)时,周长L最短为3.类型3探究特殊三角形的存在性问题6如图,已知抛物线E1:yx2经过点A(1,m),以原点为顶点的抛物线E2经过点B(2,2),点A,B

10、关于y轴的对称点分别为点A,B.(1)求m的值;(2)求抛物线E2的函数解析式;(3)在第一象限内,抛物线E1上是否存在点Q,使得以点Q,B,B为顶点的三角形为直角三角形?若存在,求出点Q的坐标;若不存在,请说明理由解:(1)抛物线E1经过点A(1,m),m121.(2)抛物线E2的顶点在原点,可设它对应的函数解析式为yax2(a0),又点B(2,2)在抛物线E2上,2a22.解得a.抛物线E2的函数解析式为yx2.(3)假设在抛物线E1上存在点Q,使得以点Q,B,B为顶点的三角形为直角三角形当点B为直角顶点时,过点B作Q1BBB交抛物线E1于点Q1,则点Q1与B的横坐标相等且为2.将x2代入

11、yx2,得y4.点Q1(2,4);当点Q2为直角顶点时,则有Q2B2Q2B2BB2,过点Q2作Q2GBB于点G.设点Q2的坐标为(t,t2)(t0),则有(t2)2(t22)2(2t)2(t22)242,整理得t43t20.t0,t230,解得t1,t2(舍去)点Q2(,3)综上所述,存在符合条件的点Q坐标为(2,4)与(,3)7(2016雅安中学二诊)如图,已知抛物线与y轴交于点C(0,4),与x轴交于A(x1,0),B(x2,0)两点,其中x1,x2为方程x22x80的两个根(1)求该抛物线的解析式;(2)点Q是线段AB上的动点,过点Q作QEAC,交BC于点E,连接CQ,设Q(x,0),C

12、QE的面积为y,求y关于x的函数关系式及CQE的面积的最大值;(3)点M的坐标为(2,0),问:在直线AC上,是否存在点F,使得OMF是等腰三角形?若存在,请求出点F的坐标,若不存在,请说明理由解:(1)解方程x22x80,得x14,x22.A(4,0),B(2,0)设抛物线解析式为ya(x4)(x2)将C(0,4)代入,解得a.抛物线解析式为yx2x4.(2)由Q(x,0),可得BQx2,AQ4x,过点E作EHAB于点H.EHCO.又QEAC,.,即EH(x2)SCQESCBQSEBQ(x2)4(x2)(x2),y关于x的函数关系式为yx2x(x1)23(2x4)CQE的面积的最大值为3.(

13、3)存在点F使得OMF是等腰三角形设AC的解析式为ykxb.直线AC过点A(4,0)和C(0,4),解得直线AC的解析式为yx4.点F在AC上,设F(x,x4),OF,MF,OM2.若OMF是等腰三角形,则可能有三种情况:如图1,当OFFM时,F的横坐标应为1,F(1,3);当OMOF2时,2,化简得x24x60.80这种情况不存在;如图2,当OMMF时,4,化简得x26x80,解得x12,x24(舍去)F(2,2)综上所述,当OMF是等腰三角形时,F(1,3)或(2,2)8(2016凉山模拟)如图,已知正方形OABC的边长为2,顶点A,C分别在x轴,y轴的正半轴上,点E是BC的中点,F是AB延长线上一点且FB1.(1)求经过点O,A,E三点的抛物线解析式;(2)点P在抛物线上运动,当点P运动到什么位置时OAP的面积为2

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1