1、1. 用EXCEL文档绘制土壤的水分特征曲线的散点图。2. 比较土壤的水分特征曲线。3. 分别用幂函数、BC函数和RETC软件拟合土壤水分特征曲线,并比较三个函数的拟合效果。4.在土壤的水分特征曲线的散点图的基础上,根据三种函数用实线绘制计算的水分特征曲线,并比较实测值和计算值的差异。土壤的水分特征曲线的散点图。基质势(-h)(cm)土壤含水率()(cm3/cm3)0.39610200.394430.39600.3885800.3791110.371900.342850.3(1)土壤水分曲线的特征散点图(2)分别用幂函数、VG函数、BC函数拟合土壤水分特征曲线,并比较三种函数的拟合效果。土壤水
2、分特征曲线分析:由上述绘制的三种曲线我们可以清晰地看出由VG函数绘制出来的曲线与由实测值绘制的曲线基本重合,BC函数绘制的曲线稍次之,幂函数绘制的曲线效果最差。(3)RETC软件中VG函数和BC函数拟合图RETC中VG函数拟合图RETC中BC函数拟合图(4)实验数据和拟合数据如下:VG拟合BC拟合0.39580.39290.39540.39450.39060.38660.38090.38560.37030.3640.33880.33110.30050.3083作业二作业:用RETC软件拟合下列三种土壤的水分特征曲线并计算土壤非饱和导水率和扩散率,用EXCEL作图比较水分特征曲线的拟合和实测结果
3、。soil 1(cm3/cm3)dry h(cm)wet h(cm)soil 2(cm3/cm3)soil 3(cm3/cm3)0.2714.4510.61164.8904.45341.56618.70.22592.6389.8776.95812519.42507.10.24502307.5550397.813481116.20.26431.4248.3405.6284.6787.15570.28374.4203.8307.6210489.4302.2326.9169.1237.7158.3318.4174.50.32286.4141.3185.6120.3213.8105.5250.9118
4、.4145.592.7146.465.80.36219.199113.670.9101.141.80.38190.182.387.353.469.326.60.4162.867.464.938.946.116.50.42136.553.94526.328.59.60.4411041.125.914.714.34.41RETC软件中VG函数对三种土壤的拟合(1)Soil 1 RETC中VG函数和BC函数的拟合图Soil 1dry RETC中VG函数拟合图Soil 1dry RETC中BC函数拟合图Soil 1wet RETC中VG函数拟合图Soil 1wet RETC中BC函数拟合图(2)Soi
5、l 2 RETC中VG函和BC函数的拟合图Soil 2dry RETC中VG函数拟合图Soil 2dry RETC中BC函数拟合图Soil 2wet RETC中VG函数拟合图Soil 2wet RETC中BC函数拟合图(3)Soil 3 RETC中VG函数和BC函数的拟合图Soil 3dry RETC中VG函数拟合图Soil 3dry RETC中BC函数拟合图Soil 3wet RETC中VG函数拟合图Soil 3wet RETC中BC函数拟合图2.三种土壤的水分特征曲线在Excel中的实测值和拟合图(1)Soid 1 土壤水分特征曲线的拟合图Soid 1 土壤水分特征曲线VG拟合图Soid
6、1 土壤水分特征曲线BC拟合图(2)Soid 2 土壤水分特征曲线的拟合图Soid 2 土壤水分特征曲线VG拟合图(3)Soid 3 土壤水分特征曲线的拟合图Soid 3 土壤水分特征曲线VG拟合图Soid 3 土壤水分特征曲线BX拟合图3.三种土壤水分特征曲线在Excel中的对比图三种土壤的水分曲线VG拟合图对比三种土壤的水分曲线BC拟合图对比由以上的对比可知,在拟合过程中方法不同拟合的结果也不同,VG函数拟合的效果比较好。作业三练习用Philip 入渗公式和入渗的经验公式描述下列土壤的入渗特征 1. 用EXCEL文档绘制土壤的累计入渗量散点图。 2. 用不同的入渗公式拟合实验数据,计算出入
7、渗公式中的参数,并比较不同入渗公式的拟合效果。入渗时间(min)累计入渗量(cm)1.80.055.80.1210.10.1617.60.5327.70.8856.11.8792.52.61150.23.97193.24.47264.25.59356.46.95(1)累计入渗量散点图(2)用不同的入渗公式拟合实验数据,计算出入渗公式中的参数,并比较不同入渗公式的拟合效果。由Philip入渗模型拟合实验数据,如下图:该模型拟合后的回归系数=0.9901,而=, ,故可得Philip模型公式为: =0.1312+0.0132,即=0.1312, =0.0132。由Kostiakov入渗模型拟合实验数据,如下图:该模型可得Kostiakov模型公式为=0.0265=0.0265, =0.9907, =0.9817。由上述图形及回归系数可知,两种模型拟合的效果都比较好,但Philip入渗模型较Kostiakov入渗模型更能反映累积入渗量随时间的变化规律,即Philip模型为更优模型。
copyright@ 2008-2022 冰豆网网站版权所有
经营许可证编号:鄂ICP备2022015515号-1