ImageVerifierCode 换一换
格式:DOCX , 页数:13 ,大小:130.30KB ,
资源ID:15217198      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/15217198.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(线段的和差倍分问题的证明Word格式文档下载.docx)为本站会员(b****1)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

线段的和差倍分问题的证明Word格式文档下载.docx

1、DM = AB对应练习1、已知:如图所示,点D、E分别是等边的边AC、BC上的点,AD=CE,BD、AE交于点P,于Q求证:2、如图所示,在中,AB=AC,BE平分,交AC于D,于E点,求证:3、如图所示,在中,D是BC的中点,M是BD的中点求证:AC=2AM4、已知:如图所示,D是的边BC上一点,且CD=AB,AE是的中线求证:AC=2AE5、已知:如图所示,锐角中,BE是角平分线,垂足是D求证:AC=2BD二、割补线段法这是证明线段的和差倍分问题的一种重要方法。即通过“分割”或“添补”的形式,在相关线段或其延长线上构造一线段,使之能够表示几条线段的和差倍分关系,从而将多线段问题转化为两线段

2、问题。在证明线段的和差倍分关系时,往往通过添辅助线,构造出能表示线段的和差倍分关系的线段,促使问题的转化。但在添加辅助线之前一定要结合题意和图形深入分析,想一想,图形中是否已经存在能表示有关线段和差倍分关系的线段,否则乱添加辅助线只能把图形复杂化,使思路步人歧途。下面请看一个例子。例2、P是正方形ABCD的边BC上的任意一点,AQ平分PAD.AP=BP+DQ.例3、 如图,ABC中,BAC=90,AE是经过点A的一条直线,交BC于F,且B、C在AE在的异侧,BDAE于D,CEAE于E,DB=DE+CE。1、如图所示,已知中,BD、CE分别平分和,BD、CE交于点O求证:BE+CD=BC2、如图

3、所示,已知中,CD是的平分线,求证:BC=AC+AD3、如图所示,若E为正方形ABCD的边BC上一点,AF为的平分线,AF与CD相交于F点求证:AE=BE+DF4、如图所示,等边和等边,点A在DE的延长线上,求证:BD+DC=AD三、比例线段法即找出与所证明有关的比例式,通过对比例式进行变形或重新组合,从而得出线段之间的和差倍分关系。例5 如图,在ABC中,BD是B的平分线,ABD的外接园交BC于E,若AB=AC,CE=2AD。 证明线段的和差倍分问题作业 1、如图所示,在等腰三角形ABC中,P是底边BC上的任意一点(1)求证:P点到两腰的距离之和等于腰上的高(2)若P点在BC的延长线上,那么

4、点P到两腰的距离与腰上的高三者之间存在什么关系?2、如图所示,等腰三角形ABC中,AB=AC,BD平分求证:BC=AB+DC3、如图所示,已知是等腰三角形,AB=AC,AD和CE是高,它们相交于H,求证:AH=2BD分析:如图,因为AB等于ABC的中位线NM的长,所以原命题就转化为证明DMNM。DN为RtADC斜边上的中线,DN=NC;2=C,又2C=B=1=2+3,2=3=C ,DM=MN,问题得证。说明:证明线段的和差倍分问题,大都是采取间接的方法进行,即把线段的和差倍分问题转化为证明两条线段相等的问题。“转化”是证明线段的和差倍分问题的指导思想,它通过对原问题进行变形,促使矛盾的转移,从

5、而达到化未知为已知,化难为易,化繁为简的目的,一般说来,运用定理法证明线段的和差倍分问题,就是根据有关定理将原命题转化后再证明。2、已知:如图所示,在中,AB=AC,AB的垂直平分线MN分别交BC、AB于点M、N求证:CM=2BM能力挑战1、如图所示,在中,D是BC的中点,M是BD的中点求证:能力挑战2、已知:如图所示,在中,BD是AC边上的中线,BH平分,分别交BD、BH、BC于E、G、F求证:2DE=CF【经典练习】1、如图所示,已知中,AD=DB,求证:3、已知:如图所示,在中,AB=AC,D是BC的中点,于E求证:EB=3EA如图所示,在中,AB=AC,P是BC上一点,且求证:PB=2

6、PC6、如图所示,在中,AB=AC,BE平分,交AC于D,于E点,求证:例2 如图,在ABC中,BD=FC,FGDEBA,D、F在BC上,E、G在AC上.FG=AB-DE本题的关键在于构造一条线段,使之等于(AB-DE),如图,在AB上载取线段AH=DE,则AB-DE=BH,从而把原命题转化为证明FG=BH的问题,进而通过证BHDFGC,使原命题得证。例3 如图,P是正方形ABCD的边BC上的任意一点,AQ平分PAD.证明:延长PB至E,使BE=DQ,四边形ABCD是正方形,BA=AD,EBA=QDA=90ABEADQ,E=4,3=1,1=2,3=2,PAQ=BAQ=4E=PAE,PE=AP,

7、既BP+BE=AP,BP+DQ=AP例2通过“分割”的形式构造从两条线段之差,例3通过“添补”的形式构造从两条线段之和,从而将原命题转化为两条线段的问题,值得注意的是:在运用“割补法”证明线段的和差倍分关系时,是运用“添补”的形式构造线段的“和”或“倍”,还是运用“分割”的形式构造线段的“差”或“几分之几”,这不能取决于原命题的和差倍分形式。因为“和”与“差”,“倍”与“分”是可以互相转化的。因此,我们在选择割补的形式时要结合图形和题目的已知条件,即所割补的线段不是“孤立”的,而应能够与原来的图形产生联系。从以上三个例题可知,在证明线段的和差倍分关系时,往往通过添辅助线,构造出能表示线段的和差

8、倍分关系的线段,促使问题的转化。例4 如图,ABC中,BAC=90通过分析题目的已知条件可知:ABDCAE ,从而得AD=CE,则DE+CE=AE,而BD=AE,原命题得证。常规题型1、如图所示,已知中,BD、CE分别平分和,BD、CE交于点O求证:能力挑战1、如图所示,在等腰直角三角形ABC中,AD=AE,交BC于F,过点F作于M,交BE延长线于点G,求证:BG=AF+FG能力挑战2、如图所示,在中,AB=AC,BE平分,求证:AE+BE=BC【练习】1、如图所示,已知中,CD是的平分线,求证:2、如图所示,若E为正方形ABCD的边BC上一点,AF为的平分线,AF与CD相交于F点求证:3、如

9、图所示,已知和均为等边三角形,B、C、D在一直线上,求证:CE=AC+CD4、如图所示,已知在中,AC=BC,AD是的平分线,求证:AB=AC+CD5、如图所示,等边和等边,点A在DE的延长线上,求证:分析与证:因为“CE=2AD”与“AB=AC”的倍分关系一致,因此想办法通过比例式将这些线段联系起来,连接DE,则CDE=ABC,故CDECBA,得CE:DE=AC:AB=2,又由BD为ABC的平分线得DE=AD,所以CE:AD=2,即CE=2AD。运用定理法、割补法和比例线段法是证明线段的和差倍分问题常用的方法,它们的共同点是:通过变换,促使问题的转化从而达到证明的目的。鉴于几何问题的复杂多样性,在证明线段的和差倍分问题时,不应局限于这三种方法,而应积极开动脑筋,拓展思路,即能够运用定势思维进行思考,又要防止定势思维的局限性。 证明线段的和差倍分问题作业 4、如图所示,在中,P是AC的中点,过A过BP的垂线交BC延长线于点D,E是垂足若,求证:BP=4PE

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1