ImageVerifierCode 换一换
格式:DOCX , 页数:20 ,大小:213.45KB ,
资源ID:15147249      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/15147249.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(中考数学复习专题21特殊的平行四边形含中考真题解析Word格式.docx)为本站会员(b****3)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

中考数学复习专题21特殊的平行四边形含中考真题解析Word格式.docx

1、了解平行四边形、矩形、菱形、正方形及梯形之间的相互关系,能够熟练运用正方形的性质解决具体问题2正方形判定掌握正方形的判定定理,并能综合运用特殊四边形的性质和判定解决问题,发现决定中点四边形形状的因素,熟练运用特殊四边形的判定及性质对中点四边形进行判断,并能对自己的猜想进行证明2年中考【2015年题组】1(2015崇左)下列命题是假命题的是( )A对角线互相垂直且相等的平行四边形是正方形B对角线互相垂直的矩形是正方形C对角线相等的菱形是正方形D对角线互相垂直平分的四边形是正方形【答案】D考点:1正方形的判定;2平行四边形的判定;3菱形的判定;4矩形的判定2(2015连云港)已知四边形ABCD,下

2、列说法正确的是()A当AD=BC,ABDC时,四边形ABCD是平行四边形B当AD=BC,AB=DC时,四边形ABCD是平行四边形C当AC=BD,AC平分BD时,四边形ABCD是矩形D当AC=BD,ACBD时,四边形ABCD是正方形【答案】B【解析】试题分析:一组对边平行且相等的四边形是平行四边形,A不正确;两组对边分别相等的四边形是平行四边形,B正确;对角线互相平分且相等的四边形是矩形,C不正确;对角线互相垂直平分且相等的四边形是正方形,D不正确;故选B1平行四边形的判定;2矩形的判定;3正方形的判定3(2015徐州)如图,菱形中,对角线AC、BD交于点O,E为AD边中点,菱形ABCD的周长为

3、28,则OE的长等于()A3.5 B4 C7 D14【答案】A菱形ABCD的周长为28,AB=284=7,OB=OD,E为AD边中点,OE是ABD的中位线,OE=AB=7=3.5故选A菱形的性质4(2015柳州)如图,G,E分别是正方形ABCD的边AB,BC的点,且AG=CE,AEEF,AE=EF,现有如下结论:BE=GE;AGEECF;FCD=45;GBEECH其中,正确的结论有()A1个 B2个 C3个 D4个1全等三角形的判定与性质;2正方形的性质;3相似三角形的判定与性质;4综合题5(2015内江)如图所示,正方形ABCD的面积为12,ABE是等边三角形,点E在正方形ABCD内,在对角

4、线AC上有一点P,使PD+PE的和最小,则这个最小值为()A B C D1轴对称-最短路线问题;2最值问题;3正方形的性质6(2015南充)如图,菱形ABCD的周长为8cm,高AE长为cm,则对角线AC长和BD长之比为()A1:2 B1:3 C1: D1:如图,设AC,BD相较于点O,菱形ABCD的周长为8cm,AB=BC=2cm,高AE长为cm,BE=1(cm),CE=BE=1cm,AC=AB=2cm,OA=1cm,ACBD,OB=(cm),BD=2OB=cm,AC:BD=1:故选D7(2015安徽省)如图,矩形ABCD中,AB8,BC4点E在边AB上,点F在边CD上,点G、H在对角线AC上

5、若四边形EGFH是菱形,则AE的长是( )A B C5 D6【答案】C1菱形的性质;2矩形的性质8(2015十堰)如图,正方形ABCD的边长为6,点E、F分别在AB,AD上,若CE=,且ECF=45,则CF的长为()2勾股定理;3正方形的性质;4综合题;5压轴题9(2015鄂州)在平面直角坐标系中,正方形A1B1C1D1、D1E1E2B2、A2B2C2D2、D2E3E4B3、A3B3C3D3按如图所示的方式放置,其中点B1在y轴上,点C1、E1、E2、C2、E3、E4、C3在x轴上,已知正方形A1B1C1D1的边长为1,B1C1O=60,B1C1B2C2B3C3则正方形A2015B2015C2

6、015D2015的边长是()1正方形的性质;2规律型;3综合题10(2015广安)如图,已知E、F、G、H分别为菱形ABCD四边的中点,AB=6cm,ABC=60,则四边形EFGH的面积为 cm2【答案】连接AC,BD,相交于点O,如图所示,E、F、G、H分别是菱形四边上的中点,EH=BD=FG,EHBDFG,EF=AC=HG,四边形EHGF是平行四边形,菱形ABCD中,ACBD,EFEH,四边形EFGH是矩形,四边形ABCD是菱形,ABC=60,ABO=30,ACBD,AOB=90,AO=AB=3,AC=6,在RtAOB中,由勾股定理得:OB=,BD=,EH=BD,EF=AC,EH=,EF=

7、3,矩形EFGH的面积=EF?FG=cm2故答案为:1中点四边形;2菱形的性质11(2015凉山州)菱形ABCD在平面直角坐标系中的位置如图所示,顶点B(2,0),DOB=60,点P是对角线OC上一个动点,E(0,1),当EP+BP最短时,点P的坐标为 【答案】(,)的交点,点P的坐标为方程组的解,解方程组得:,所以点P的坐标为(,),故答案为:2坐标与图形性质;3轴对称-最短路线问题;4动点型;5压轴题;6综合题12(2015潜江)菱形ABCD在直角坐标系中的位置如图所示,其中点A的坐标为(1,0),点B的坐标为(0,),动点P从点A出发,沿ABCDAB的路径,在菱形的边上以每秒0.5个单位

8、长度的速度移动,移动到第2015秒时,点P的坐标为 (0.5,)3规律型;13(2015北海)如图,已知正方形ABCD的边长为4,对角线AC与BD相交于点O,点E在DC边的延长线上若CAE=15,则AE= 【答案】8正方形ABCD的边长为4,对角线AC与BD相交于点O,BAC=45,ABDC,ADC=90,CAE=15,E=BAE=BACCAE=4515=30在RtADE中,ADE=90,E=30,AE=2AD=8故答案为:81含30度角的直角三角形;2正方形的性质14(2015南宁)如图,在正方形ABCD的外侧,作等边ADE,则BED的度数是 【答案】452等边三角形的性质15(2015玉林

9、防城港)如图,已知正方形ABCD边长为3,点E在AB边上且BE=1,点P,Q分别是边BC,CD的动点(均不与顶点重合),当四边形AEPQ的周长取最小值时,四边形AEPQ的面积是 如图1所示,作E关于BC的对称点E,点A关于DC的对称点A,连接AE,四边形AEPQ的周长最小,AD=AD=3,BE=BE=1,AA=6,AE=4DQAE,D是AA的中点,DQ是AAE的中位线,DQ=AE=2;CQ=DCCQ=32=1,BPAA,BEPAEA,即,BP=,CP=BCBP=,S四边形AEPQ=S正方形ABCDSADQSPCQSBEP=9AD?DQCQ?CPBE?BP=9321=,故答案为:16(2015达

10、州)在直角坐标系中,直线与y轴交于点A,按如图方式作正方形A1B1C1O、A2B2C2C1、A3B3C1C2,A1、A2、A3在直线上,点C1、C2、C3在x轴上,图中阴影部分三角形的面积从左到游依次记为、,则的值为 (用含n的代数式表示,n为正整数)故答案为:1一次函数图象上点的坐标特征;17(2015齐齐哈尔)如图,正方形ABCB1中,AB=1AB与直线l的夹角为30,延长CB1交直线l于点A1,作正方形A1B1C1B2,延长C1B2交直线l于点A2,作正方形A2B2C2B3,延长C2B3交直线l于点A3,作正方形A3B3C3D4,依此规律,则A2014A2015= 1相似三角形的判定与性

11、质;18(2015梧州)如图,在正方形ABCD中,点P在AD上,且不与A、D重合,BP的垂直平分线分别交CD、AB于E、F两点,垂足为Q,过E作EHAB于H(1)求证:HF=AP;(2)若正方形ABCD的边长为12,AP=4,求线段EQ的长(1)证明见试题解析;(2)2全等三角形的判定与性质;3勾股定理;19(2015恩施州)如图,四边形ABCD、BEFG均为正方形,连接AG、CEAG=CE;(2)求证:AGCE(2)证明见试题解析(1)由ABCD、BEFG均为正方形,得出AB=CB,ABC=GBE=90,BG=BE,得出ABG=CBE,从而得到ABGCBE,即可得到结论;(2)由ABGCBE

12、,得出BAG=BCE,由BAG+AMB=90,对顶角AMB=CMN,得出BCE+CMN=90,证出CNM=90即可试题解析:(1)四边形ABCD、BEFG均为正方形,AB=CB,ABC=GBE=90,BG=BE,ABG=CBE,在ABG和CBE中,AB=CB,ABG=CBE,BG=BE,ABGCBE(SAS),AG=CE;(2)如图所示:ABGCBE,BAG=BCE,ABC=90,BAG+AMB=90,AMB=CMN,BCE+CMN=90,CNM=90,AGCE20(2015武汉)已知锐角ABC中,边BC长为12,高AD长为8(1)如图,矩形EFGH的边GH在BC边上,其余两个顶点E、F分别在AB、AC边上,EF交AD于点K求的值;设EH=x,矩形EFGH的面积为S,求S与x的函数关系式,并求S的最大值;(2)若AB=AC,正方形PQMN的两个顶点在ABC一边上,另两个顶点分别在ABC的另两边上,直接写出正方形PQMN的边长(1);, S的

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1