ImageVerifierCode 换一换
格式:DOCX , 页数:22 ,大小:641.70KB ,
资源ID:15088267      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/15088267.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(控制理论实验报告模板Word格式.docx)为本站会员(b****3)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

控制理论实验报告模板Word格式.docx

1、1熟悉THKKL-6型 控制理论及计算机控制技术实验箱及“THKKL-6”软件的使用;2熟悉各典型环节的阶跃响应特性及其电路模拟;3测量各典型环节的阶跃响应曲线,并了解参数变化对其动态特性的影响。二、实验设备1THKKL-6型 控制理论及计算机控制技术实验箱;2PC机一台(含“THKKL-6”软件);3USB接口线。三、实验内容1设计并组建各典型环节的模拟电路;2测量各典型环节的阶跃响应,并研究参数变化对其输出响应的影响。四、实验原理自控系统是由比例、积分、微分、惯性等环节按一定的关系组建而成。熟悉这些典型环节的结构及其对阶跃输入的响应,将对系统的设计和分析十分有益。本实验中的典型环节都是以运

2、放为核心元件构成,其原理框图如图1-1所示。图中Z1和Z2表示由R、C构成的复数阻抗。图1-1 典型环节的原理框图1 比例(P)环节比例环节的特点是输出不失真、不延迟、成比例地复现输出信号的变化。它的传递函数与方框图分别为:当Ui(S)输入端输入一个单位阶跃信号,且比例系数为K时的响应曲线如图1-2所示。图1-2 比例环节的响应曲线2积分(I)环节 积分环节的输出量与其输入量对时间的积分成正比。设Ui(S)为一单位阶跃信号,当积分系数为T时的响应曲线如图1-3所示。图1-3 积分环节的响应曲3比例积分(PI)环节比例积分环节的传递函数与方框图分别为:其中T=R2C,K=R2/R1设Ui(S)为

3、一单位阶跃信号,图1-4示出了比例系数(K)为1、积分系数为T时的PI输出响应曲线。图1-4 比例积分环节的响应曲线4比例微分(PD)环节比例微分环节的传递函数与方框图分别为: 其中设Ui(S)为一单位阶跃信号,图1-5示出了比例系数(K)为2、微分系数为T时PD的输出响应曲线。图1-5 比例微分环节的响应曲5比例积分微分(PID)环节比例积分微分(PID)环节的传递函数与方框图分别为:其中, 设Ui(S)为一单位阶跃信号,图1-6示出了比例系数(K)为1、微分系数为TD、积分系数为TI时PID的输出。图1-6 PID环节的响应曲线6惯性环节惯性环节的传递函数与方框图分别为:当Ui(S)输入端

4、输入一个单位阶跃信号,且放大系数(K)为1、时间常数为T时响应曲线如图1-7所示。图1-7 惯性环节的响应曲线五、实验步骤1比例(P)环节根据比例环节的方框图,选择实验箱上的通用电路单元设计并组建相应的模拟电路,如图1-8所示。图1-8 比例环节的模拟电路图中后一个单元为反相器,其中R0=200k。若比例系数K=1时,电路中的参数取:R1=100k,R2=100k。若比例系数K=2时,电路中的参数取:R1=100k,R2=200k。当ui为一单位阶跃信号时,用“THKKL-6”软件观测并记录相应K值时的实验曲线,并与理论值进行比较。另外R2还可使用可变电位器,以实现比例系数为任意的设定值。2积

5、分(I)环节根据积分环节的方框图,选择实验箱上的通用电路单元设计并组建相应的模拟电路,如图1-9所示。图1-9 积分环节的模拟电路根据比例积分环节的方框图,选择实验箱上的通用电路单元设计并组建相应的模拟电路,如图1-10所示。图1-10 比例积分环节的模拟电路若取比例系数K=1、积分时间常数T=1s时,电路中的参数取:R1=100k,R2=100k,C=10uF(K= R2/ R1=1,T=R2C=100k10uF=1s);若取比例系数K=1、积分时间常数T=0.1s时,电路中的参数取:R1=100k,R2=100k,C=1uF(K= R2/ R1=1,T=R2C=100k1uF=0.1s)。

6、注:通过改变R2、R1、C的值可改变比例积分环节的放大系数K和积分时间常数T。当ui为单位阶跃信号时,用“THKKL-6”软件观测并记录不同K及T值时的实验曲线,并与理论值进行比较。根据比例微分环节的方框图,选择实验箱上的通用电路单元设计并组建其模拟电路,如图1-11所示。图1-11 比例微分环节的模拟电路若比例系数K=1、微分时间常数T=0.1s时,电路中的参数取:R1=100k,R2=100k,C=1uF(K= R2/ R1=1,T=R1C=100k1uF=0.1s);若比例系数K=1、微分时间常数T=1s时,电路中的参数取:R1=100k,R2=100k,C=10uF(K= R2/ R1

7、=1,T=R1C=100k当ui为一单位阶跃信号时,用“THKKL-6”软件观测并记录不同K及T值时的实验曲线,并与理论值进行比较。根据比例积分微分环节的方框图,选择实验箱上的通用电路单元设计并组建其相应的模拟电路,如图1-12所示。图1-12 比例积分微分环节的模拟电路若比例系数K=2、积分时间常数TI =0.1s、微分时间常数TD =0.1s时,电路中的参数取:R1=100k,R2=100k,C1=1uF、C2=1uF (K= (R1 C1+ R2 C2)/ R1 C2=2,TI=R1C2=100k1uF=0.1s,TD=R2C1=100k若比例系数K=1.1、积分时间常数TI =1s、微

8、分时间常数TD =0.1s时,电路中的参数取:R1=100k,R2=100k,C1=1uF、C2=10uF (K= (R1 C1+ R2 C2)/ R1 C2=1.1,TI=R1C2=100k10uF=1s,TD=R2C1=100k当ui为一单位阶跃信号时,用“THKKL-6”软件观测并记录不同K、TI、TD值时的实验曲线,并与理论值进行比较。根据惯性环节的方框图,选择实验箱上的通用电路单元设计并组建其相应的模拟电路,如图1-13所示。图1-13 惯性环节的模拟电路若比例系数K=1、时间常数T=1s时,电路中的参数取:10uF=1s)。若比例系数K=1、时间常数T=0.1s时,电路中的参数取:

9、通过改变R2、R1、C的值可改变惯性环节的放大系数K和时间常数T。实验二、阶系统的瞬态响应1通过实验了解参数(阻尼比)、(阻尼自然频率)的变化对二阶系统动态性能的影响;2掌握二阶系统动态性能的测试方法。3USB接口线;1观测二阶系统的阻尼比分别在01三种情况下的单位阶跃响应曲线;2调节二阶系统的开环增益K,使系统的阻尼比,测量此时系统的超调量、调节时间(= 0.05);3为一定时,观测系统在不同时的响应曲线。1二阶系统的瞬态响应用二阶常微分方程描述的系统,称为二阶系统,其标准形式的闭环传递函数为 (2-1)闭环特征方程:其解,针对不同的值,特征根会出现下列三种情况:1)01(欠阻尼),此时,系

10、统的单位阶跃响应呈振荡衰减形式,其曲线如图2-1的(a)所示。它的数学表达式为:式中,。2)(临界阻尼)此时,系统的单位阶跃响应是一条单调上升的指数曲线,如图2-1中的(b)所示。3)(过阻尼),此时系统有二个相异实根,它的单位阶跃响应曲线如图2-1的(c)所示。 (a) 欠阻尼(01时,系统的阶跃响应无超调产生,但这种响应的动态过程太缓慢,故控制工程上常采用欠阻尼的二阶系统,一般取=0.60.7,此时系统的动态响应过程不仅快速,而且超调量也小。2二阶系统的典型结构典型的二阶系统结构方框图和模拟电路图如2-2、如2-3所示。图2-2 二阶系统的方框图图2-3 二阶系统的模拟电路图电路参考单元为

11、:通用单元1、通用单元2、通用单元3、反相器单元、电位器组由图2-2可得其开环传递函数为:,其中:, (,)其闭环传递函数为:与式2-1相比较,可得 , 根据图2-3,选择实验箱上的通用电路单元设计并组建模拟电路。1值一定时,图2-3中取C=1uF,R=100k(此时),Rx阻值可调范围为0470k。系统输入一单位阶跃信号,在下列几种情况下,用“THKKL-6”软件观测并记录不同值时的实验曲线。1.1 当可调电位器RX=250k时, =0.2,系统处于欠阻尼状态,其超调量为53%左右;1.2 若可调电位器RX=70.7k时, =0.707,系统处于欠阻尼状态,其超调量为4.3%左右;1.3 若

12、可调电位器RX=50k时, =1,系统处于临界阻尼状态;1.4 若可调电位器RX=25k时, =2,系统处于过阻尼状态。2值一定时,图2-4中取R=100k,RX=250k(此时=0.2)。2.1 若取C=10uF时, 2.2 若取C=0.1uF(可从无源元件单元中取)时, 由于实验电路中有积分环节,实验前一定要用“锁零单元”对积分电容进行锁零。实验三、高阶系统的瞬态响应和稳定性分析1通过实验,进一步理解线性系统的稳定性仅取决于系统本身的结构和参数,与外作用及初始条件均无关的特性;2研究系统的开环增益K或其它参数的变化对闭环系统稳定性的影响。观测三阶系统的开环增益K为不同数值时的阶跃响应曲线。三阶系统及三阶以上的系统统称为高阶系统。一个高阶系统的瞬态响应是由一阶和二阶系统的瞬态响应组成。控制系统能投入实际应用必须首先满足稳定的要求。线性系统稳定的充要条件是其特征方程式的根全部位于S平面的左方。应用劳斯判据就可以判别闭环特征方程式的根在S平面上的具体分布,从而确定系统是否稳定。本实验是研究一个三阶系统的稳定性与其参数对系统性能的关系。三阶系统的方框图和模拟电路图如图3-1、图3-2所示。图3-1 三阶系统的方框图 图3-2 三阶系统的模拟电路图电路参考

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1