1、在端点处是条件收敛,收敛域是,在端点1与处都是绝对收敛的4幂级数与逐项求导逐项积分后幂级数具有相同的收敛半径、收敛区间,但收敛域相同吗 不一定,例如收敛域为,但逐项积分和幂级数为收敛域为设幂级数,收敛域分别是,则有如果一个幂级数经逐项求导或逐项求积后其收敛性发生了变化,则变化的只能是收敛区间两个端点处的收敛性一般来说,逐项求导后,系数由变为,不会使收敛区间端点处的收敛性变好;而逐项求积后,系数由变为,不会使收敛区间端点处的收敛性变坏5如何求幂级数的和函数首先求出幂级数的收敛半径与收敛域,然后可通过以下几种方法求幂级数的和函数:(1)变量替换法通过变量替换,化为一较简单的幂级数(2)拆项法将幂级
2、数分拆成两个(或几个)简单幂级数的和(3)逐项求导法通过逐项求导得出另一幂级数,而此幂级数的和函数是不难求得的;然后再通过牛顿莱布尼兹公式,得到原幂级数的和函数(4)逐项积分法通过逐项求积得出另一幂级数,而此幂级数的和函数是可以求得的;然后再通过求导数,得到原幂级数的和函数一般通过逐项求导逐项积分向等比级数转化,系数含有,向的幂级数展开形式转化,系数含有向展开形式转化注意:上述运算过程在幂级数的收敛区间内总是可行的(而在幂级数的收敛域上却不一定可行)因此,我们一般只限定在幂级数的收敛区间内进行上述运算,由此得到在收敛区间上的和函数,而求幂级数在其收敛域上的和,还需要讨论在端点的函数值,利用函数
3、在端点的左(右)连续性来求还需指出,这里所介绍的方法,仅仅是可供选择的几种途经对具体问题,常常要综合利用上述方法,或寻求其他方法才能得到问题的解【6如何利用幂级数求数项级数的和选择合适的幂级数,使该数项级数为幂级数在某收敛点处的值然后求出幂级数的和函数,则便是原数项级数的和7如何求函数在处的幂级数展开式主要有以下两种方法:(1)直接法计算函数在处的各阶导数,写出它的泰勒级数,然后证明(2)间接法借助某些基本函数的展开式,通过适当变换,四则运算,逐项求导或者逐项求积等方法,导出所求函数色幂级数展开式这是常用的方法注意求展开式时,一定要写展开式成立的范围三 典型例题1求幂级数的收敛域:1); 2)
4、;3); 4);5)解:1)由于,因此收敛半径,当时,这个级数为,通项记为,则有=,于是,所以当时级数发散,从而可知这个级数的收敛域为2)令,则级数转化为(缺陷幂级数),下面先求的收敛域,因为,即对任意,都收敛,因此的收敛域为,因此的收敛域为3)令,则级数转化为,下面先求的收敛域,由于=,所以收敛半径,因而级数的收敛区间为,当时,级数为=收敛,!当时,级数为=,收敛(收敛,因为),发散,故发散,因此的收敛域为,级数的收敛域为的解集,即4)因为,又,所以,从而收敛半径,又当时,可见级数在时发散,故这个级数的收敛域为5)法1: (将其看成不缺项的幂级数 ) 设 , 法2: 令, 收敛半径为2, 故
5、 法3: (将其视为以为参数的数项级数或视为一般的函数项级数) ,当 即 时幂级数收敛, 当时发散, 故即收敛半径为,收敛区间是,当时,为发散,因此收敛域为2应用逐项求导或逐项求积分方法求下列幂级数的和函数(应同时指出它们的收敛域):(1)求幂级数的和函数;(2)求幂级数的和函数;(3)求幂级数的和函数;(4)求幂级数的和函数;(5)求幂级数的和函数;(6)求幂级数的和函数;(7)求幂级数的和函数注:应用:求幂级数的和函数思想:一般是通过逐项求导,逐项积分向等比级数转化(假如系数含有,向的展开形式转化,假如系数含有向展开形式转化)必须的知识点:1)等比级数,-;2)牛顿莱布尼兹公式;3)注意点
6、:)1)求和函数时必须先要求收敛域;2)求时必须要看级数展开式中第一项;例 设,先看展开式中第一项是,因此常见错误,有些人把0直接代通项,设,先看展开式中第一项是,因此3)涉及到除以时,要讨论为0不为0幂级数求和函数步骤: 求其收敛半径和收敛域 在收敛区间内求和函数(利用变量替换, 逐项求积, 逐项求导等方法) ,(假如系数含有,向的展开形式转化,假如系数含有向展开形式转化); 收敛域若不是开区间, 还须讨论在收敛域端点处的和,若左端点收敛,则在左端点右连续,若右端点收敛,则在右端点左连续 写出和函数, 注明定义域解(1)1)求收敛域;(或);收敛半径;收敛区间;当时,收敛;当时,发散因此收敛
7、域为2)向等比级数转化;分析:因为等比级数系数为或,而的系数为,要向等比级数转化必须要把抵消,此题可以通过逐项求导就可以把抵消令,在收敛区间上逐项求导(注意幂级数在收敛区间内可逐项求导与逐项求积),当时,(若幂级数在收敛区间的左(右)端点上收敛,则其和函数也在这一端点上右(左)连续)(2)1)求收敛域;收敛域为要向等比级数转化,必须要把系数中的抵消,但是只有的求导才能出现,必须要乘一个,除以一个,而要除以,就必须讨论为0不为0当时,当时,(只需要求出就会求出,下面求)令,收敛域在收敛区间上逐项求导当时,于是(3) 收敛域为对在上逐项积分;(4)解1:收敛域为解2 由于=,且当时,这个幂级数发散
8、,所以幂级数的收敛域为,设,令在上对逐项积分得,=所以=,从而 ()(5)讨论级数,因为,当,即,收敛,收敛;$当,即,发散,发散,因此收敛半径,收敛区间为,且时,与都是发散级数,所以幂级数的收敛域为,设,在逐项求导可得,所以 (),(6)由知幂级数的收敛半径为 又时, 级数均收敛, 故幂级数的收敛域为令则 由于, 有. 从而, 有于是 而由的定义, 此外, 当时, 在处右连续, 在处左连续 故综上知 (7)易求收敛域为,3利用幂级数求数项级数的和1)求级数的和函数,并求数项级数的和;2) 求级数的和;方法:先选择适当的幂级数, 使该数项级数是所选幂级数在某收敛点处的值, 然后求出和函数, 则便为所求之和解(1)法1:级数的收敛域为, ,令,逐项积分,两边求导,得,所以,从而 通过如下代数运算,使其求和过程非常简便法2 令 ,所以 ,(2)作幂级数,并设和函数为,则,两边求导,得 ,(因为在收敛区间内,故用带入上式得4求函数的幂级数展开式 1)将函数,展开成的幂级数; 2)将函数展开成(1)的幂级数;3)将函数展开成的幂级数;4)在处的泰勒级数展开式; 5)求在处的泰勒级数展开式;6)求在处的泰勒级数展开式 看清要在哪点展开; 确保得到的是幂级数; 注出定义域 解:1)将视为一个整体,由的展开式可知 , 类似地 , 2) (), 4) 5) 6),而,于是
copyright@ 2008-2022 冰豆网网站版权所有
经营许可证编号:鄂ICP备2022015515号-1