1、3、不等式的解集 1课时4、一元一次不等式 2课时5、一元一次不等式与一次函数 2课时6、一元一次不等式组 2课时7、一元一次不等式组应用 1课时回顾与思考 1课时2.1 不等关系知识与技能目标理解不等式的意义;能根据条件列出不等式.过程与方法目标通过列不等式,训练学生的分析判断能力和逻辑推理能力.情感态度与价值观目标通过用不等式解决实际问题,使学生认识数学与人类生活的密切联系以及对人类历史发展的作用,并以此激发学生学习数学的信心和兴趣.教学重点用不等关系解决实际问题.教学难点正确理解题意列出不等式.教法与学法讨论探索法教具准备多媒体课件教学过程一、创设问题情境,引入新课我们学过等式,知道利用
2、等式可以解决许多问题.同时,我们也知道在现实生活中还存在许多不等关系,利用不等关系同样可以解决实际问题.本节课我们就来了解不等关系,以及不等关系的应用.二、新课讲授既然不等关系在现实生活中并不少见,大家肯定接触过不少,能举出例子吗?那么,如何用式子表示不等关系呢?请看例题.(课件)例1:用两根长度均为lcm的绳子,分别围成一个正方形和圆.(1)如果要使正方形的面积不大于25 cm2, 那么绳长l应满足怎样的关系式?(2)如果要使圆的面积不小于100 cm2,那么绳长l应满足怎样的关系式?(3)当l=8时,正方形和圆的面积哪个大?l=12呢?(4)你能得到什么猜想?改变l的取值,再试一试.本题中
3、大家首先要弄明白两个问题,一个是正方形和圆的面积计算公式,另一个是了解“不大于”“大于”等词的含意.两数比较有大于、等于、小于三种情况,“不大于”就是等于或小于.下面请大家互相讨论,按照题中的要求进行解答.猜想:用长度均为l cm的两根绳子分别围成一个正方形和圆,无论l取何值,圆的面积总大于正方形的面积,即.做一做:课件通过测量一棵树的树围(树干的周长)可以计算出它的树龄.通常规定以树干离地面1.5 m的地方作为测量部位,某树栽种时的树围为5 cm,以后树围每年增加约为 3 cm.这棵树至少生长多少年其树围才能超过2.4 m?(只列关系式).师请大家互相讨论后列出关系式.议一议:观察由上述问题
4、得到的关系式,它们有什么共同特点?一般地,用符号“”(或“”),“”(或“”)连接的式子叫做不等式.例用不等式表示(1)a是正数;(2)a是负数;(3)a与6的和小于5;(4)x与2的差小于1;(5)x的4倍大于7;(6)y的一半小于3.三、随堂练习当x=2时,不等式x+34成立吗?当x=1.5时,成立吗?当x=1呢?四、课时小结能根据题意列出不等式,特别要注意“不大于”,“不小于”等词语的理解.通过不等关系的式子归纳出不等式的概念.五、课后作业习题2.1 第1、2、3、4题.六、板书设计不等式:用来表示不等关系的式子叫不等式。用符号、连接的式子叫不等式。七、课后反思2.2 不等式的基本性质探
5、索并掌握不等式的基本性质;理解不等式与等式性质的联系与区别.通过对比不等式的性质和等式的性质,培养学生的求异思维,提高大家的辨别能力.通过大家对不等式性质的探索,培养大家的钻研精神,同时还加强了同学间的合作与交流.探索不等式的基本性质,并能灵活地掌握和应用.能根据不等式的基本性质进行化简.教学方法类推探究法粉笔,三角板我们学习了等式,并掌握了等式的基本性质,大家还记得等式的基本性质吗?等式的基本性质1:在等式的两边都加上(或减去)同一个数或整式,所得的结果仍是等式.等式的基本性质2:在等式的两边都乘以或除以同一个数(除数不为0),所得的结果仍是等式.不等式与等式只有一字之差,那么它们的性质是否
6、也有相似之处呢?本节课我们将加以验证.1.不等式基本性质的推导等式的性质我们已经掌握了,那么不等式的性质是否和等式的性质一样呢?请大家探索后发表自己的看法.35 3+25+2 3252 3+a5+a 3a5a有以上推理你可以得到什么猜想?不等式的基本性质1:在不等式的两边都加上(或减去)同一个整式,不等号的方向不变.完成下列填空:2323( ) 35 2( )3(-1)( )3(-1)(-5)( )3(-5)师同学们又可以得到什么猜想?结论: 不等式的基本性质2:不等式的两边都乘以(或除以)同一个正数,不等号的方向不变;不等式的基本性质3:不等式的两边都乘以(或除以)同一个负数,不等号的方向改
7、变。2.用不等式的基本性质解释的正确性师在上节课中,我们知道周长为l的圆和正方形,它们的面积分别为和,且有存在,你能用不等式的基本性质来解释吗?3.例题讲解例将下列不等式化成“xa”或“xa”的形式.(1)x51;(2)2x3;(3)3x9.说明:在不等式两边同时乘以或除以同一个数(除数不为0)时,要注意数的正、负,从而决定不等号方向的改变与否.4.议一议(小黑板)讨论下列式子的正确与错误.(1)如果ab,那么a+cb+c;(2)如果ab,那么acbc;(3)如果ab,那么acbc;(4)如果ab,且c0,那么.在上面的例题中,我们讨论的是具体的数字,这种题型比较简单,因为要乘以或除以某一个数
8、时就能确定是正数还是负数,从而能决定不等号方向的改变与否.在本题中讨论的是字母,因此首先要决定的是两边同时乘以或除以的某一个数的正、负数.本题难度较大,请大家全面地加以考虑,并能互相合作交流.在利用不等式的基本性质2和基本性质3时,关键是看两边同时乘以或除以的是一个什么性质的数,从而确定不等号的改变与否.不等式的基本性质有三条,而等式的基本性质有两条.区别:在等式的两边同时乘以或除以同一个数(除数不为0)时,所得结果仍是等式;在不等式的两边同时乘以或除以同一个数(除数不为0)时会出现两种情况,若为正数则不等号方向不变,若为负数则不等号的方向改变.联系:不等式的基本性质和等式的基本性质,都讨论的
9、是在两边同时加上(或减去),同时乘以(或除以,除数不为0)同一个数时的情况.且不等式的基本性质1和等式的基本性质1相类似.三、课堂练习1.将下列不等式化成“xa”或“xa”的形式.(1)x12 (2)x2.已知xy,下列不等式一定成立吗?(1)x6y6 (2)3x3y (3)2x2y四、课堂小结本节课主要用类推的方法探索出了不等式的基本性质;利用不等式的基本性质进行简单的化简或填空.习题2.2 第1、2题,补充2.2不等式的基本性质不等式的两边同时加上(或减去)同一个整式,不等号的方向不变。不等式的的两边同时乘以(或除以)同一个正数,不等号的方向不变。不等式的的两边同时乘以(或除以)同一个负数
10、,不等号的方向要改变。2.3 不等式的解集能够根据具体问题中的大小关系了解不等式的意义;理解不等式的解、不等式的解集、解不等式这些概念的含义;会在数轴上表示不等式的解集.培养学生从现实生活中发现并提出简单的数学问题的能力;经历求不等式的解集的过程,发展学生的创新意识.从实际问题抽象为数学模型,让学生认识数学与人类生活的密切联系及对人类历史发展的作用,通过探索求不等式的解集的过程,体验数学活动充满着探索与创造.理解不等式中的有关概念;探索不等式的解集并能在数轴上表示出来.引导学生探索学习法三角板上节课,我们对照等式的性质类比地推导出了不等式的基本性质,并且讨论了它们的异同点.下面我找一位同学简单
11、地回顾一下不等式的基本性质.在学习了等式的基本性质后,我们利用等式的基本性质学习了一元一次方程,知道了方程的解、解方程等概念,大家还记得这些概念吗?上节课我们用类推的方法,仿照等式的基本性质推导出了不等式的基本性质,能不能按此方法推导出不等式的解和解不等式呢?本节课我们就来试一试.1.现实生活中的不等式.燃放某种礼花弹时,为了确保安全,人在点燃导火线后要在燃放前转移到10 m以外的安全区域.已知导火线的燃烧速度为以0.02 m/s,人离开的速度为4 m/s,那么导火线的长度应为多少厘米?2.想一想:(1)x=5,6,8能使不等式x5成立吗?(2)你还能找出一些使不等式x5成立的x的值吗?(3)
12、x=9,10,11等比5大的数都能使不等式x5成立.由此看来,6,7,8,9,10都能使不等式成立,那么大家能否根据方程的解来类推出不等式的解呢?不等式的解唯一吗?能使不等式成立的未知数的值,叫做不等式的解.正因为不等式的解不唯一,因此把所有满足不等式的解集合在一起,构成不等式的解集(solution set).请大家再类推出解不等式的概念.求不等式解集的过程叫解不等式.3.议一议:请你用自己的方式将不等式x5的解集和不等式x51的解集分别表示在数轴上,并与同伴交流.请大家讨论一下,如何把不等式的解集在数轴上表示出来呢?请举例说明.如x3, 即为数轴上表示3的点的右边部分,在数轴上表示3的点的位置上画空心圆圈,表示不包括这一点. x3,可以用数轴上表示3的点的左边部分来表示,在这一点上画空心圆圈.x3,可以用数轴上表示3的点和它的右边部分来表示,在表示3的点的位置上画实心圆点,表示包括这一点.x3,可以用数轴上表示3的点和它的左边部分来表示,在表示3的点的位置上画实心圆点.4.例1根据不等式的基本性质求不等式的解集,并把解集在数轴上表示出来.(1)x24;(2)2x8(3)2x210P44页 第、2题.1.理解不等式的解、不等式的解集、解不等式的概念.2.会根据不等式的基本性质解不等式,并把解集在数轴上
copyright@ 2008-2022 冰豆网网站版权所有
经营许可证编号:鄂ICP备2022015515号-1