ImageVerifierCode 换一换
格式:DOCX , 页数:29 ,大小:742.39KB ,
资源ID:14910188      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/14910188.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(中考数学综合题专题复习圆专题解析Word下载.docx)为本站会员(b****2)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

中考数学综合题专题复习圆专题解析Word下载.docx

1、三. 知识框图:【典型例题】 【例1】. 爆破时,导火索燃烧的速度是每秒0.9cm,点导火索的人需要跑到离爆破点120m以外的安全区域。这个导火索的长度为18cm,那么点导火索的人每秒钟跑6.5m是否安全? 分析:爆破时的安全区域是以爆破点为圆心,以120m为半径的圆的外部,如图所示: 解: 点导火索的人非常安全 【例2】. 已知梯形ABCD内接于O,ABCD,O的半径为4,AB6,CD2,求梯形ABCD的面积。 分析:要求梯形面积必须先求梯形的高,即弦AB、CD间距离,为此要构造直角三角形利用勾股定理求高。为了便于运用垂径定理,故作OECD于E,延长EO交AB于F,证OFAB。 此题容易出现

2、丢解的情况,要注意分情况讨论。 解:分两种情况讨论: (1)当弦AB、CD分别在圆心O的两侧时,如图(1): 过O作OECD于E,延长EO交AB于F 连OC、OB,则CEDE ABCD,OECD OFAB,即EF为梯形ABCD的高 在RtOEC中,EC1,OC4 (2)当弦AB、CD在圆心O的同侧时,如图(2): 过O作OECD于E,交AB于F 以下证法同(1),略。 【例3】. 如图,已知AB为O的直径,P是OB的中点,求tanCtanD的值。为了求tanCtanD的值,需要分别构造出含有C和D的两个直角三角形。而AB是直径,为我们寻找直角创造了条件。连BC、BD,则得到RtACB和RtAD

3、B。可以发现ACDABD,ADCABC,于是,可以把tanCtanD转化为连结BC、BD AB是O的直径,ACBADB90 ACDABD,ADCABC 作AECD于E,作BFCD于F 则AECADB ACADAEAB 同理,BDBCBF APEBPF P为半径OB的中点 tanCtanD3 【例4】. 由已知条件,等边ABC可得60角,根据圆的性质,可得ADB60,利用截长补短的方法可得一个新的等边三角形,再证两个三角形全等,从而转移线段DC。 证明:延长DB至点E,使BEDC,连结AE ABC是等边三角形 ACBABC60,ABAC ADBACB60 四边形ABDC是圆内接四边形 ABEAC

4、D 在AEB和ADC中, AEAD ADB60 AED是等边三角形 ADDEDBBE BEDC DBDCDA 说明:本例也可以用其他方法证明。如: (1)延长DC至F,使CFBD,连结AF,再证ACFABD,得出ADDF,从而DBCDDA。 (2)在DA上截取DGDC,连结CG,再证BDCAGC,得出BDAG,从而DBCDDA。 【例5】. 如图,已知四边形ABCD内接于O,AB是直径,ADDC,分别延长BA、CD交于点E,BFEC交EC的延长线于F,若EAAO,BC12,求CF的长。在RtCFB中,已知BC12,求CF,故可寻找与之相似的直角三角形,列比例式求解。连结OD,BD ABCAOD

5、 ODBC EAAO,EAAOBO AB16,BE24 四边形ABCD内接于O EDAEBC E是公共角 EDAEBC 设ADDCx,EDy,则有 AB为O的直径 ADBF90 又DABFCB RtADBRtCFB与圆有关的问题,大都与相似三角形联系在一起。 此题运用了两次相似三角形,找到线段之间的关系,并且运用了方程的思想解几何问题,这是解几何问题的一种重要方法。 【例6】. 如图,已知等腰ABC中,ABAC,以AB为直径的O分别交AC、BC于连结FD AB是直径,ADBC ABAC,BDDC,FADDAB 四边形ABDF是圆内接四边形 CFDB C是公共角 ABCDFC ABAC CDDF

6、 (也可以证CFDB,ABAC,BC,CCFD,CDDF。) DE切O于D FADEDF 又CDEEDFFADDAB CDEDAB CDEEDF CDFD CEEF,DECF 设CD3x,AC5x EC9 【例7】. 如图,相交两圆的公共弦长为120cm,它分别是一圆内接正六边形的边和另一圆内接正方形的边。求两圆相交弧间阴影部分的面积。公共弦AB120 【例8】.一个长方体的香烟盒里,装满大小均匀的20支香烟。打开烟盒的顶盖后,二十支香烟排列成三行,如图(1)所示。经测量,一支香烟的直径约为0.75cm,长约为8.4cm。 (1)试计算烟盒顶盖ABCD的面积(本小题计算结果不取近似值)。 (2

7、)制作这样一个烟盒至少需要多少面积的纸张(不计重叠粘合的部分,计算结果 解题点拨:四边形ABCD中,AD长为7支香烟的直径之和,易求;求AB长,只要计算出如图(2)中的O1E长即可。(1)如图(2),作O1EO2O3 四边形ABCD的面积是: (2)制作一个烟盒至少需要纸张: 【例9】. 在直径为20cm的圆中,有一弦长为16cm,求它所对的弓形的高。一小于直径的弦所对的弓形有两个:劣弧弓形与优弧弓形。 如图,HG为O的直径,且HGAB,AB16cm,HG20cm 故所求弓形的高为4cm或16cm【例10】. 求:CAD所夹圆内部分的面积。符合题设条件的图形有两种情况: (1)圆心O在CAD的

8、内部,如图(1),连结OC、OD,过O作OEAD于点E OCAB (2)圆心O在DAC的外部时,如图(2),有:【例11】. 由已知条件可知AB、CD弦的位置不确定,所以要分多种情况讨论,可分为四种情况。(1)当AB、CD不相交时,且AB、CD在圆心的两侧,如图(1)连结OD、OB。 M、N分别是弦AB、CD的中点,OD、OB过圆心O图(1) (2)当AB、CD不相交,且在圆心O的同侧时,如图(2),连结OB、OC图(2) (3)当AB、CD相交于点P,且圆心O在DPA的内部时,如图(3),DPA是圆内角,图(3) (4)当AB、CD相交于点P,且圆心O在DPA的外部时,如图(4)图(4) 【

9、例12】.已知:如图,圆心A(0,-3),圆A与x轴相切,圆B的圆心B在x正半轴上,且圆B与圆A外切于点P。两圆内公切线MP交y轴于点M,交x轴于点N:(1)求证AOBNPB;(2)设圆A半径为r1,圆B半径为r2,若r1:r23:2,求点M、N的坐标及公切线MP的函数解析式;(3)设点B(x1,0),点B关于y轴的对称点B(x2,0),若x1x2-6,求过B、A、B三点的抛物线解析式;(4)若圆A的位置大小不变,圆心B在x正半轴上移动,并始终有圆B与圆A外切,过点M作圆B的切线MC,C为切点,MC时,B点在x轴的什么位置?从你的解答中能获得什么猜想?(1) 设直线MP的解析式为ykxb, (

10、3)设抛物线为yax2bxc(a0) 令y0,则有ax2bxc0 B与B关于y轴对称, x1x20,即b0, 又点A(0,-3),C=-3 (4)MCMP 可证APMAOB 猜想:圆心B在x轴的正半轴上任一位置时,都有切线MP的长等于点B的横坐标或四边形MOBC是长方形。【模拟试题】一. 选择题:(本题共24分,每小题4分,每道题只有一个正确答案) 1. 已知AB是O的直径,半径EOAB于O,弦CDEO于F点,若CDB120,则的度数为( ) A. 10 B. 15 C. 30 D. 60 2. 如图,已知O中,M是弦CD的中点,N为弦AB的中点,并且的度数为130、90,则MON的度数为(

11、) A. 70 B. 90 C. 130 D. 160 3. 已知ABC中,a、b、c是A、B、C的对边,若r是内切圆半径,则ABC的面积可以表示为( ) A. B. C. D. 4. 已知两圆的半径分别为R、r,且圆心距为d,若,则这两圆的位置关系为( ) A. 外离或外切 B. 相交或内切 C. 外切或内切 D. 内切或内含 5. 已知正多边形的边长为a与外接圆半径R之间满足,则这个多边形是( ) A. 正三边形 B. 正四边形 C. 正五边形 D. 正六边形 6. 已知正方形ABCD边长为5,剪去四个角后成正八边形,则正八边形的边长为( ) A. B. C. D. 二. 填空题:(本题共16分,每小题4分) 7. 已知ABC,C90,B28,以C为圆心,以CA为半径的圆交AB于D,则的度数为_。 8. 已知ABC内接于O,F、E是的三分之一点,若AFE130,则C_度。 9. 已知PA切O于A,APO30,若,OP交于O于C,则PC_。 10. 两圆半径之比为2:

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1