ImageVerifierCode 换一换
格式:DOCX , 页数:10 ,大小:81.87KB ,
资源ID:14840913      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/14840913.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(Matlab求解微分方程组及偏微分方程组Word文件下载.docx)为本站会员(b****3)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

Matlab求解微分方程组及偏微分方程组Word文件下载.docx

1、求解器ODE类型特点说明ode45非刚性单步算法:4、5阶Runge-Kutta方程;累计截断误差大部分场合的首选算法ode232、3阶Runge-Kutta方程;使用于精度较低的情形ode113多步法:Adams算法;高低精度可达计算时间比ode45短ode23t适度刚性采用梯形算法适度刚性情形ode15s刚性Gears反向数值微分;精度中等若ode45失效时,可尝试使用ode23s单步法:2阶Rosebrock算法;低精度当精度较低时,计算时间比ode15s短ode23tb梯形算法;ode23、ode45是极其常用的用来求解非刚性的标准形式的一阶微分方程(组)的初值问题的解的Matlab常

2、用程序,其中:ode23采用龙格-库塔2阶算法,用3阶公式作误差估计来调节步长,具有低等的精度.ode45则采用龙格-库塔4阶算法,用5阶公式作误差估计来调节步长,具有中等的精度.3在matlab命令窗口、程序或函数中创建局部函数时,可用内联函数inline,inline函数形式相当于编写M函数文件,但不需编写M-文件就可以描述出某种数学关系.调用inline函数,只能由一个matlab表达式组成,并且只能返回一个变量,不允许u,v这种向量形式.因而,任何要求逻辑运算或乘法运算以求得最终结果的场合,都不能应用inline函数,inline函数的一般形式为:FunctionName=inline

3、(函数内容, 所有自变量列表)例如:(求解F(x)=x2*cos(a*x)-b ,a,b是标量;x是向量 )在命令窗口输入:Fofx=inline(x .2*cos(a*x)-b , x,a,b);g= Fofx(pi/3 pi/3.5,4,1)系统输出为:g=-1.5483 -1.7259注意:由于使用内联对象函数inline不需要另外建立m文件,所有使用比较方便,另外在使用ode45函数的时候,定义函数往往需要编辑一个m文件来单独定义,这样不便于管理文件,这里可以使用inline来定义函数.二实例介绍1.几个可以直接用Matlab求微分方程精确解的实例例1 求解微分方程程序:syms x

4、y; y=dsolve(Dy+2*x*y=x*exp(-x2),x)例2 求微分方程在初始条件下的特解并画出解函数的图形. y=dsolve(x*Dy+y-exp(1)=0,y(1)=2*exp(1),x);ezplot(y)例 3 求解微分方程组在初始条件下的特解并画出解函数的图形.syms x y t x,y=dsolve(Dx+5*x+y=exp(t),Dy-x-3*y=0x(0)=1y(0)=0t)simple(x);simple(y)ezplot(x,y,0,1.3);axis auto2.用ode23、ode45等求解非刚性标准形式的一阶微分方程(组)的初值问题的数值解(近似解)例

5、 4 求解微分方程初值问题的数值解,求解范围为区间0,0.5.fun=inline(-2*y+2*x2+2*xxy);x,y=ode23(fun,0,0.5,1);plot(x,y,o-例 5 求解微分方程的解,并画出解的图形.分析:这是一个二阶非线性方程,我们可以通过变换,将二阶方程化为一阶方程组求解.令,则编写M-文件vdp.mfunction fy=vdp(t,x)fy=x(2);7*(1-x(1)2)*x(2)-x(1);end在Matlab命令窗口编写程序y0=1;0t,x=ode45(vdp,0,40,y0);或t,x=ode45(vdp,0,40,y0);y=x(:,1);dy=

6、x(:,2);plot(t,y,t,dy)练习与思考:M-文件vdp.m改写成inline函数程序?3.用Euler折线法求解Euler折线法求解的基本思想是将微分方程初值问题化成一个代数(差分)方程,主要步骤是用差商替代微商,于是记从而于是例 6 用Euler折线法求解微分方程初值问题的数值解(步长取0.4),求解范围为区间0,2.本问题的差分方程为 clear f=sym(y+2*x/y2 a=0; b=2; h=0.4; n=(b-a)/h+1; x=0; y=1; szj=x,y;%数值解 for i=1:n-1 y=y+h*subs(f,x,y);%subs,替换函数 x=x+h;

7、szj=szj;x,y; endszj plot(szj(:,1),szj(:,2)替换函数subs例如:输入subs(a+b,a,4) 意思就是把a用4替换掉,返回 4+b,也可以替换多个变量,例如:subs(cos(a)+sin(b),a,b,sym(alpha),2)分别用字符alpha替换a和2替换b,返回 cos(alpha)+sin(2)特别说明:本问题可进一步利用四阶Runge-Kutta法求解,Euler折线法实际上就是一阶Runge-Kutta法,Runge-Kutta法的迭代公式为相应的Matlab程序为: l1=subs(f, 替换函数 l2=subs(f, ,x+h/2

8、,y+l1*h/2); l3=subs(f, ,x+h/2,y+l2*h/2); l4=subs(f, ,x+h,y+l3*h); y=y+h*(l1+2*l2+2*l3+l4)/6;(1)ode45求解问题并比较差异.(2)利用Matlab求微分方程的解.(3)求解微分方程的特解.(4)利用Matlab求微分方程初值问题的解.提醒:尽可能多的考虑解法三微分方程转换为一阶显式微分方程组 Matlab微分方程解算器只能求解标准形式的一阶显式微分方程(组)问题,因此在使用ODE解算器之前,我们需要做的第一步,也是最重要的一步就是借助状态变量将微分方程(组)化成Matlab可接受的标准形式.当然,如

9、果ODEs由一个或多个高阶微分方程给出,则我们应先将它变换成一阶显式常微分方程组.下面我们以两个高阶微分方程组构成的ODEs为例介绍如何将它变换成一个一阶显式微分方程组.Step 1 将微分方程的最高阶变量移到等式左边,其它移到右边,并按阶次从低到高排列.形式为:Step 2 为每一阶微分式选择状态变量,最高阶除外ODEs中所有是因变量的最高阶次之和就是需要的状态变量的个数,最高阶的微分式不需要给它状态变量.Step 3 根据选用的状态变量,写出所有状态变量的一阶微分表达式(1)求解微分方程组其中(2)求解隐式微分方程组提示:使用符号计算函数solve求,然后利用求解微分方程的方法四偏微分方程

10、解法Matlab提供了两种方法解决PDE问题,一是使用pdepe函数,它可以求解一般的PDEs,具有较大的通用性,但只支持命令形式调用;二是使用PDE工具箱,可以求解特殊PDE问题,PDEtoll有较大的局限性,比如只能求解二阶PDE问题,并且不能解决片微分方程组,但是它提供了GUI界面,从复杂的编程中解脱出来,同时还可以通过FileSave As直接生成M代码.1.一般偏微分方程(组)的求解(1)Matlab提供的pdepe函数,可以直接求解一般偏微分方程(组),它的调用格式为:sol=pdepe(m,pdefun,pdeic,pdebc,x,t)pdefun是PDE的问题描述函数,它必须换

11、成标准形式:这样,PDE就可以编写入口函数:c,f,s=pdefun(x,t,u,du),m,x,t对应于式中相关参数,du是u的一阶导数,由给定的输入变量可表示出c,f,s这三个函数.pdebc是PDE的边界条件描述函数,它必须化为形式:于是边值条件可以编写函数描述为:pa,qa,pb,qb=pdebc(x,t,u,du),其中a表示下边界,b表示上边界.pdeic是PDE的初值条件,必须化为形式:,故可以使用函数描述为:u0=pdeic(x)sol是一个三维数组,sol(:,:,i)表示的解,换句话说,对应x(i)和t(j)时的解为sol(i,j,k),通过sol,我们可以使用pdeval函数直接计算某个点的函数值.(2)实例说明求解偏微分其中,且满足初始条件及边界条件解:(1)对照给出的偏微分方程和pdepe函数求解的标准形式,原方程改写为可见%目标PDE函数funct

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1